考點(diǎn):數(shù)列遞推式,數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)當(dāng)n≥2時(shí),Sn-1-2bn-1+3=0,兩式相減,得數(shù)列{bn}為等比數(shù)列,即可求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)確定數(shù)列{cn}的通項(xiàng),利用分組求和的方法求數(shù)列{cn}的前2n+1項(xiàng)和P2n+1.
解答:
解:(Ⅰ)∵T
n-2b
n+3=0,∴當(dāng)n=1時(shí),b
1=3,
當(dāng)n≥2時(shí),S
n-1-2b
n-1+3=0,兩式相減,得b
n=2b
n-1,(n≥2)
∴數(shù)列{b
n}為等比數(shù)列,∴
bn=3•2n-1. …(6分)
(Ⅱ)
cn= | n -1, n為奇數(shù) | 3•2n-1 , n為偶數(shù) |
| |
.
令a
n=n-1,…(8分)
故P
2n+1=(a
1+a
3+…+a
2n+1)+(b
2+b
4+…+b
2n)=
+…(12分)
=2
2n+1+n
2+n-2…(14分)
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng)與求和,確定數(shù)列{bn}為等比數(shù)列是解題的關(guān)鍵.