【題目】已知數(shù)列{an}(n=1,2,3,4,5)滿足a1=a5=0,且當(dāng)2≤k≤5時(shí),(ak﹣ak﹣12=1,令S= , 則S不可能的值是( 。
A.4
B.0
C.1
D.-4

【答案】C
【解析】由題設(shè),滿足條件的數(shù)列{an}的所有可能情況有:
(1)0,1,2,1,0.此時(shí)S=4;
(2)0,1,0,1,0.此時(shí)S=2;
(3)0,1,0,﹣1,0.此時(shí)S=0;
(4)0,﹣1,﹣2,﹣1,0.此時(shí)S=﹣4;
(5)0,﹣1,0,1,0.此時(shí)S=0;
(6)0,﹣1,0,﹣1,0.此時(shí)S=﹣2.
所以,S的所有可能取值為:﹣4,﹣2,0,2,4.
故不可能的S=1,
故選:C.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC面積S和三邊a,b,c滿足:S=a2﹣(b﹣c)2 , b+c=8,則△ABC面積S的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種樹(shù)苗栽種時(shí)高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n),其中a,b為常數(shù),n∈N,f(0)A.已知栽種3年后該樹(shù)木的高度為栽種時(shí)高度的3倍.

1)栽種多少年后,該樹(shù)木的高度是栽種時(shí)高度的8倍;

2)該樹(shù)木在栽種后哪一年的增長(zhǎng)高度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦3名男生,2名女生,B中學(xué)推薦了3名男生,4名女生,兩校推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后隊(duì)員的水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì)

1求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率.

2某場(chǎng)比賽前從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程為ρ=4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為(t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)曲線C與直線l相交于P、Q兩點(diǎn),以PQ為一條邊作曲線C的內(nèi)接矩形,求該矩形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位,得到函數(shù)的圖象,則下列說(shuō)法正確的是( ).

A. B. 直線的圖象的一條對(duì)稱軸

C. 的最小正周期為D. 為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1 , 焦點(diǎn)為F2;以F1 , F2為焦點(diǎn),離心率e=的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
當(dāng)m=1時(shí),求橢圓C2的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面ABCD是正方形,AC與BD交于點(diǎn)O,底面ABCD,F(xiàn)為BE的中點(diǎn),

(1)求證:平面ACF;

(2)求BE與平面ACE的所成角的正切值;

(3)在線段EO上是否存在點(diǎn)G,使CG平面BDE ?若存在,求出EG:EO的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c∈(0,+∞).

1)若a=6,b=5,c=4ABCBC,CA,AB的長(zhǎng),證明:cosAQ

2)若a,b,c分別是ABCBC,CA,AB的長(zhǎng),若a,b,cQ時(shí),證明:cosAQ;

3)若存在λ∈(-22)滿足c2=a2+b2ab,證明:a,bc可以是一個(gè)三角形的三邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案