已知函數(shù)
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/3/ifvxo2.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,函數(shù)恒有意義,求實(shí)數(shù)的取值范圍.
(1);(2).
解析試題分析:(1)對數(shù)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a4/3/ifvxo2.png" style="vertical-align:middle;" />,意味著真數(shù)可以取遍一切正實(shí)數(shù),故內(nèi)層二次函數(shù)應(yīng)與軸有交點(diǎn),即,解得的范圍;
(2)函數(shù)恒有意義,即真數(shù)大于零恒成立,利用參變分離法解決此恒成立問題即可得的取值范圍
試題解析:(1)令,由題設(shè)知需取遍內(nèi)任意值,
所以解得
故的取值范圍為.
(2)對一切恒成立且
即對一切恒成立
令,當(dāng)時,取得最小值為,
得:
又因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/35/b/uj3pz.png" style="vertical-align:middle;" />
所以:的取值范圍為.
考點(diǎn):對數(shù)函數(shù)的圖像和性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在區(qū)間上是增函數(shù).
(1)求實(shí)數(shù)的值組成的集合;
(2)設(shè)關(guān)于的方程的兩個非零實(shí)根為、.試問:是否存在實(shí)數(shù),使得不等式對任意及 恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的最小值為,且關(guān)于的一元二次不等式的解集為。
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)其中,求函數(shù)在時的最大值;
(Ⅲ)若(為實(shí)數(shù)),對任意,總存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù).
(l)求的單調(diào)區(qū)間和極值;
(2)若對任意恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,判斷函數(shù)在上的單調(diào)性并用定義證明;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在[-3,3]上的奇函數(shù),且當(dāng)x∈[0,3]時,f(x)=x|x-2|
⑴在平面直角坐標(biāo)系中,畫出函數(shù)f(x)的圖象
⑵根據(jù)圖象,寫出f(x)的單調(diào)增區(qū)間,同時寫出函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)()滿足①;②
(1)求的解析式;
(2)若對任意實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com