4.O是平面內(nèi)的一個(gè)定點(diǎn),A,B,C是平面內(nèi)不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),λ∈[0,+∞),則P點(diǎn)所在的直線是△ABC的( 。
A.B.中線C.D.角平分線

分析 理解$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$的含義,是∠BAC的平分線上的向量,即可解答本題.

解答 解:由于O是平面上一定點(diǎn),A,B,C是平面上不共線的三個(gè)點(diǎn),
動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),λ∈[0,+∞),
∴P在∠BAC的平分線上,
∴P點(diǎn)所在的直線是△ABC的角平分線.
故選:D.

點(diǎn)評(píng) 本題考查三角形的五心,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,正確理解$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$是∠BAC的平分線上的向量是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)y=f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(-x)=f(x)與f(4-x)=f(x),若當(dāng)x∈[0,2]時(shí),f(x)=-x2+1,則當(dāng)x∈[-6,-4]時(shí),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若函數(shù)y=$\frac{3x+27}{x-3}$在區(qū)間(a,b)上的值或是(9,+∞),則logab=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.復(fù)平面上復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)Z在曲線|z-1|=2上,求復(fù)數(shù)2z-1-i在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡方程.(化成直角坐標(biāo)方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在空間四邊形ABCD中,連接AC,BD,E,F(xiàn)分別是邊AC.BD的中點(diǎn),設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$-2$\overrightarrow{c}$,$\overrightarrow{CD}$=5$\overrightarrow{a}$+6$\overrightarrow$-8$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線和x軸的交點(diǎn)為C,經(jīng)過(guò)點(diǎn)F的直線l與拋物線相交于A、B兩點(diǎn),若CB⊥AB,則|AF|-|BF|=( 。
A.$\frac{P}{2}$B.-$\frac{P}{2}$C.2PD.-2P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b的定義域?yàn)閇0,$\frac{π}{2}$],值域?yàn)閇-5,1].
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)g(x)=-4asin(bx-$\frac{π}{3}$)的最小值并求出對(duì)應(yīng)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.求雙曲線y2-x2=1和拋物線y2=mx有兩個(gè)公共點(diǎn)的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(1,2),$\overrightarrow{CA}$=(3,1),則$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角的正弦值為$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案