分析 由條件利用任意角的三角函數(shù)的定義求得sinα,cosβ,tanγ的值,再利用二倍角公式求得sin2β、cos2β的值,再利用兩角和的正弦公式求得sin(α+2β)的值.
解答 解:(1)∵點P($\frac{1}{2}$,$\frac{2}{3}$)在角α的終邊上,點Q($\frac{1}{3}$,-1)在角β的終邊上,
點M(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在角γ終邊上,
∴sinα=$\frac{\frac{2}{3}}{\sqrt{\frac{1}{4}+\frac{4}{9}}}$=$\frac{4}{5}$,cosα=$\frac{\frac{1}{2}}{\sqrt{\frac{1}{4}+\frac{4}{9}}}$=$\frac{3}{5}$;
sinβ=$\frac{-1}{\sqrt{\frac{1}{9}+1}}$=-$\frac{3\sqrt{10}}{10}$,cosβ=$\frac{\frac{1}{3}}{\sqrt{\frac{1}{9}+1}}$=$\frac{\sqrt{10}}{10}$;
tanγ=$\frac{cos\frac{2π}{3}}{sin\frac{2π}{3}}$=-$\frac{\sqrt{3}}{3}$.
(2)由(1)得 sin2β=2sinβcosβ=-$\frac{3}{5}$<0,cos2β=2cos2β-1=-$\frac{4}{5}$,
∴sin(α+2β)=sinαcos2β+cosαsin2β=-1.
點評 本題主要考查任意角的三角函數(shù)的定義、二倍角公式、兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{3}$ | B. | $\frac{4}{3}$$\sqrt{3}$ | C. | 4 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{5}}{5}$+1 | B. | $\frac{3\sqrt{5}}{5}-1$ | C. | $\frac{6\sqrt{5}}{5}$+1 | D. | $\frac{6\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(4)>f(3) | B. | f(-5)>f(5) | C. | f(-3)>f(-5) | D. | f(3)>f(-6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | -$\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在(-$\frac{π}{2}$,$\frac{π}{4}$)上是遞增的 | B. | f(x)在定義域上單調(diào)遞增 | ||
C. | f(x)的最小正周期為π | D. | f(x)的所有對稱中心為($\frac{kπ}{4}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com