20.在平面直角坐標(biāo)系中,點P($\frac{1}{2}$,$\frac{2}{3}$)在角α的終邊上,點Q($\frac{1}{3}$,-1)在角β的終邊上,點M(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在角γ終邊上.
(1)求sinα,cosβ,tanγ的值;
(2)求sin(α+2β)的值.

分析 由條件利用任意角的三角函數(shù)的定義求得sinα,cosβ,tanγ的值,再利用二倍角公式求得sin2β、cos2β的值,再利用兩角和的正弦公式求得sin(α+2β)的值.

解答 解:(1)∵點P($\frac{1}{2}$,$\frac{2}{3}$)在角α的終邊上,點Q($\frac{1}{3}$,-1)在角β的終邊上,
點M(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在角γ終邊上,
∴sinα=$\frac{\frac{2}{3}}{\sqrt{\frac{1}{4}+\frac{4}{9}}}$=$\frac{4}{5}$,cosα=$\frac{\frac{1}{2}}{\sqrt{\frac{1}{4}+\frac{4}{9}}}$=$\frac{3}{5}$;
sinβ=$\frac{-1}{\sqrt{\frac{1}{9}+1}}$=-$\frac{3\sqrt{10}}{10}$,cosβ=$\frac{\frac{1}{3}}{\sqrt{\frac{1}{9}+1}}$=$\frac{\sqrt{10}}{10}$;
tanγ=$\frac{cos\frac{2π}{3}}{sin\frac{2π}{3}}$=-$\frac{\sqrt{3}}{3}$.
(2)由(1)得 sin2β=2sinβcosβ=-$\frac{3}{5}$<0,cos2β=2cos2β-1=-$\frac{4}{5}$,
∴sin(α+2β)=sinαcos2β+cosαsin2β=-1.

點評 本題主要考查任意角的三角函數(shù)的定義、二倍角公式、兩角和的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在正方體ABCD-A1B1C1D1中,E為A1C1的中點,則異面直線CE與BD所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)計算${27^{-\frac{1}{3}}}+lg0.01-ln\sqrt{e}+{3^{{{log}_3}2}}$
(2)已知x+x-1=3,求$\frac{{{x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}}}{{{x^2}-{x^{-2}}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若一個底面是正三角形的三棱柱的正視圖如圖所示,則體積等于( 。
A.4$\sqrt{3}$B.$\frac{4}{3}$$\sqrt{3}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知P(t,3t),t∈R,M是圓O1:(x+2)2+y2=$\frac{1}{4}$上的動點,N是O2:(x-4)2+y2=$\frac{1}{4}$上的動點,則|PN|-|PM|的最大值是( 。
A.$\frac{3\sqrt{5}}{5}$+1B.$\frac{3\sqrt{5}}{5}-1$C.$\frac{6\sqrt{5}}{5}$+1D.$\frac{6\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知定義域為R的偶函數(shù)f(x)在(0,+∞)上為增函數(shù),則( 。
A.f(4)>f(3)B.f(-5)>f(5)C.f(-3)>f(-5)D.f(3)>f(-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若角α的終邊過點(-1,2),則cos(π-2α)的值為( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對于函數(shù)f(x)=tan2x,下列選項中正確的是( 。
A.f(x)在(-$\frac{π}{2}$,$\frac{π}{4}$)上是遞增的B.f(x)在定義域上單調(diào)遞增
C.f(x)的最小正周期為πD.f(x)的所有對稱中心為($\frac{kπ}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x-1}{{e}^{x-1}}$(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)y=g(x)對任意x滿足g(x)=f(4-x),證明當(dāng)x>2時,f(x)>g(x);
(3)如果x1≠x2,且f(x1)=f(x2),證明x1+x2>4.

查看答案和解析>>

同步練習(xí)冊答案