【題目】定義在上的單調(diào)遞減函數(shù),對(duì)任意都有, .
(Ⅰ)判斷函數(shù)的奇偶性,并證明之;
(Ⅱ)若對(duì)任意,不等式(為常實(shí)數(shù))都成立,求的取值范圍;(Ⅲ)設(shè), , , , .
若 , ,比較的大小并說明理由.
【答案】(Ⅰ)為上的奇函數(shù);證明見解析(Ⅱ)(Ⅲ);
【解析】【試題分析】(Ⅰ)先取取得,再取得
,進(jìn)而可得對(duì)任意都有,運(yùn)用定義可證為上奇函數(shù);(Ⅱ)先借助函數(shù)的奇偶性、單調(diào)性將不等式進(jìn)行等價(jià)轉(zhuǎn)化為,再將不等式中的參數(shù)分離出來,將該不等式化為“在上恒成立”問題,最后通過求函數(shù)
的值域即可;(Ⅲ)先依據(jù)題設(shè)條件將的解析式化簡求出,再進(jìn)行分析比較其大小:
(Ⅰ)解: 為上的奇函數(shù)
證明:取得
∴
取得
即:對(duì)任意都有
∴
∴為上奇函數(shù)
(Ⅱ)∵
∴
∵在上單減
∴在上恒成立
∴
∴在上恒成立
在上恒成立
∴當(dāng)時(shí),
∴
即
(Ⅲ)
∴在單增,在上單減
同理:
∴。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機(jī)抽取20件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
頻率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級(jí)系數(shù)為4的恰有3件,等級(jí)系數(shù)為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級(jí)系數(shù)為4的3件日用品記為,等級(jí)系數(shù)為5的2件日用品記為,現(xiàn)從, 這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級(jí)系數(shù)恰好相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)求證:曲線在點(diǎn)處的切線過定點(diǎn);
(2)若是在區(qū)間上的極大值,但不是最大值,求實(shí)數(shù)的取值范圍;
(3)求證:對(duì)任意給定的正數(shù) ,總存在,使得在上為單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列是無窮數(shù)列,且各項(xiàng)均為互不相同的正整數(shù),其前項(xiàng)和為,數(shù)列滿足.
(1)若,求的值;
(2)若數(shù)列為等差數(shù)列,求;
(3)在(1)的條件下,求證:數(shù)列中存在無窮多項(xiàng)(按原來的順序)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠2萬元設(shè)計(jì)了某款式的服裝,根據(jù)經(jīng)驗(yàn),每生產(chǎn)1百套該款式服裝的成本為1萬元,每生產(chǎn)(百套)的銷售額(單位:萬元).
(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤;
(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?
(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤最大,并求最大利潤.(注:利潤=銷售額-成本,其中成本=設(shè)計(jì)費(fèi)+生產(chǎn)成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校男女籃球隊(duì)各有10名隊(duì)員,現(xiàn)將這20名隊(duì)員的身高繪制成莖葉圖(單位:).男隊(duì)員身高在以上定義為“高個(gè)子”,女隊(duì)員身高在以上定義為“高個(gè)子”,其他隊(duì)員定義為“非高個(gè)子”,按照“高個(gè)子”和“非高個(gè)子”用分層抽樣的方法共抽取5名隊(duì)員.
(1)從這5名隊(duì)員中隨機(jī)選出2名隊(duì)員,求這2名隊(duì)員中有“高個(gè)子”的概率;
(2)求這5名隊(duì)員中,恰好男女“高個(gè)子”各1名隊(duì)員的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次綜合素質(zhì)測(cè)試中,共設(shè)有60個(gè)考場,每個(gè)考場30名考生,在考試結(jié)束后,為調(diào)查其測(cè)試前的培訓(xùn)輔導(dǎo)情況與測(cè)試成績的相關(guān)性,抽取每個(gè)考場中座位號(hào)為06的考生,統(tǒng)計(jì)了他們的成績,得到如圖所示的頻率分布直方圖.
問:
在這個(gè)調(diào)查采樣中,采用的是什么抽樣方法?
估計(jì)這次測(cè)試中優(yōu)秀(80分及以上)的人數(shù);
寫出這60名考生成績的眾數(shù)、中位數(shù)、平均數(shù)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足, .
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),數(shù)列的前項(xiàng)和為,對(duì)任意的, , 恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,
,平面底面,為的中點(diǎn),為正三角形,是棱上的一點(diǎn)(異于端點(diǎn)).
(Ⅰ)若為中點(diǎn),求證:平面;
(Ⅱ)是否存在點(diǎn),使二面角的大小為30°.若存在,求出點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com