(tan80°-4cos10°)•
3-sin70°
2-cos210°
=(  )
A、
3
B、2
C、2
3
D、4
考點:同角三角函數(shù)基本關系的運用,運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:原式括號中第一項利用同角三角函數(shù)間基本關系切化弦后,通分并利用同分母分式的減法法則計算,第二個因式利用誘導公式及二倍角的余弦函數(shù)公式變形后,約分后,計算即可得到結(jié)果.
解答: 解:原式=[tan(90°-10°)-4cos10°]•
3-sin(90°-20°)
2-
1+cos20°
2

=(
cos10°
sin10°
-4cos10°)•
2(3-cos20°)
3-cos20°

=2×
cos10°-4sin10°cos10°
sin10°

=2×
cos10°-2sin20°
sin10°

=2×
sin80°-sin20°-sin20°
sin10°

=2×
2cos50°sin30°-sin20°
sin10°

=2×
cos50°-sin20°
sin10°

=2×
sin40°-sin20°
sin10°

=2×
2cos30°sin10°
sin10°

=2
3

故選:C.
點評:此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

lg5•lg8000+(lg2 
3
2+eln1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x-2y+1≤0
2x-y≥0
x≤1
,則z=
x+1
y+1
的最大值為a,最小值為b,則a-b的值是( 。
A、
1
2
B、
2
3
C、
1
3
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=(
1
3
 log23,b=(
1
3
 log54,c=3ln3,則a,b,c的大小關系是( 。
A、c>a>b
B、c>b>a
C、a>b>c
D、a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)與g(x),若存在區(qū)間[m,n](m<n),使得f(x)與g(x)在區(qū)間[m,n]上的值域相等,則稱f(x)與g(x)為等值函數(shù),若f(x)=ax(a>1)與g(x)=logax為等值函數(shù),則a的取值范圍為( 。
A、(1,
e
B、(
e
,e)
C、(1,e
1
e
D、(e
1
e
,e)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合M={x|
x-1
x+1
<0},N={x|x2-x<0},則集合M、N的關系用韋恩(Venn)圖可以表示為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=AC=2,BC=2
3
,則
AB
AC
=( 。
A、2
3
B、2
C、-2
3
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+1,x≤0
2x,x>0
,則f(f(-
1
2
))的值為( 。
A、
2
B、
2
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}中,a1=3,前n項和為Sn(n∈N*),當n≥2時,有
Sn
-
Sn-1
=
3

(1)求數(shù)列{an}的通項公式;
(2)記Tn是數(shù)列{bn}的前n項和,若
bn
1
an
,
1
an+1
的等比中項,求Tn

查看答案和解析>>

同步練習冊答案