11.(理)函數(shù)$f(x)=\frac{9}{{{x^2}+1}}+\frac{4}{{4-{x^2}}}$(-2<x<2)的最小值為5.

分析 運(yùn)用乘1法,可得f(x)=$\frac{1}{5}$•5($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$)=$\frac{1}{5}$[(1+x2)+(4-x2)]($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$),展開后再用基本不等式,即可得到所求最小值.

解答 解:f(x)=$\frac{1}{5}$•5($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$)
=$\frac{1}{5}$[(1+x2)+(4-x2)]($\frac{9}{1+{x}^{2}}$+$\frac{4}{4-{x}^{2}}$)
=$\frac{1}{5}$[13+$\frac{9(4-{x}^{2})}{1+{x}^{2}}$+$\frac{4(1+{x}^{2})}{4-{x}^{2}}$]
≥$\frac{1}{5}$(13+2$\sqrt{9•4}$)=5.
當(dāng)且僅當(dāng)2(1+x2)=3(4-x2),即x=±$\sqrt{2}$時(shí),
f(x)取得最小值5.
故答案為:5.

點(diǎn)評(píng) 本題考查函數(shù)的最值的求法,注意運(yùn)用乘1法和基本不等式,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在Rt△ABC中,點(diǎn)D是斜邊AB上的點(diǎn),且滿足∠ACD=60°,∠BCD=30°,設(shè)AC=x,BC=y,DC=2,則x,y滿足的相等關(guān)系式是y=$\frac{\sqrt{3}x}{x-1}$,(x>1,y>$\sqrt{3}$),△ABC面積的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.近期,雙十中學(xué)首屆游泳比賽在新建成的韓振東游泳館中舉行,在前期報(bào)名中,同學(xué)們也都表現(xiàn)出了極大的興趣.為了確保賽事的順利進(jìn)行,學(xué)校邀請(qǐng)了湖里區(qū)游泳協(xié)會(huì)的相關(guān)人員前來協(xié)助,還在學(xué)校征招了8名同學(xué)當(dāng)志愿者,其中有5名男同學(xué),3名女同學(xué),為了活動(dòng)的需要,要從這8名同學(xué)中隨機(jī)抽取3名同學(xué)去執(zhí)行一項(xiàng)特殊任務(wù),記其中有X名男同學(xué).
(1)求X的分布列;
(2)求去執(zhí)行任務(wù)的同學(xué)中有男有女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.經(jīng)過直線$l:x+y-2\sqrt{2}=0$上的點(diǎn)P,向圓O:x2+y2=1引切線,切點(diǎn)為A,則切線長|PA|的最小值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an},滿足a1=1,an-an-1=n,則a10=( 。
A.45B.50C.55D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知不等式x(x+a)≤b的解集是{x|0≤x≤1},那么a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在五面體ABCDEF中,四邊形ABCD是邊長為4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,G是EF的中點(diǎn),AG=1
(1)證明:AG⊥平面ABCD;
(2)求直線BF與平面ACE所成角的正弦值;
(3)判斷線段AC上是否存在一點(diǎn)M,使MG∥平面ABF?若存在,求出$\frac{AM}{AC}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線l的方程為3x-2y+6=0,則直線l在x軸上的截距是-2;y軸上的截距是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=loga(ax2-2x+1)在區(qū)間[2,3]是減函數(shù),則a取值范圍為($\frac{3}{4}$,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案