19.經(jīng)過直線$l:x+y-2\sqrt{2}=0$上的點P,向圓O:x2+y2=1引切線,切點為A,則切線長|PA|的最小值為(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

分析 要使|PA|最小,只有|OP|最小,利用點到直線的距離公式求得|OP|的最小值d,利用勾股定理可得|PA|的最小值.

解答 解:要使|PA|最小,只有|OP|最小,如圖所示:
而|OP|的最小值,即為原點O到直線$l:x+y-2\sqrt{2}=0$的距離d,
由于d=$\frac{|0+0-2\sqrt{2}|}{\sqrt{\sqrt{2}}}$=2,
故|PA|的最小值為$\sqrt{cejnqrw^{2}{-r}^{2}}$=$\sqrt{4-1}$=$\sqrt{3}$,
故選:C.

點評 本題主要考查直線和圓的位置關(guān)系,點到直線的距離公式的應(yīng)用,體出了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.△ABC中,C=60°,a,b邊的長是方程x2-8x+6=0的根,則c邊長為4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在極坐標(biāo)系內(nèi),已知A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$)
(1)求|AB|的長;
(2)若A,B是等邊三角形的兩個頂點,求另一個頂點C的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)$f(x)=lnx+ax+\frac{1}{x}$在[1,+∞)上是單調(diào)函數(shù),則a的取值范圍是( 。
A.$(-∞,0]∪[\frac{1}{4},+∞)$B.$(-∞,-\frac{1}{4}]∪[0,+∞)$C.$[-\frac{1}{4},0]$D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,其左、右焦點分別是F1,F(xiàn)2,過點F1的直線l交橢圓C于E,G兩點,且△EGF2的周長為$4\sqrt{2}$.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于不同兩點A,B,且A,B兩點都在y軸的右側(cè),設(shè)P為橢圓上一點,且滿足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}(O$為坐標(biāo)原點),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)$f(x)=x+\frac{1}{x}$在區(qū)間$[{\frac{1}{3},3}]$上的最小值是(  )
A.2B.3C.4D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(理)函數(shù)$f(x)=\frac{9}{{{x^2}+1}}+\frac{4}{{4-{x^2}}}$(-2<x<2)的最小值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC中,頂點A(-2,1),點B在直線l:x+y-3=0上,點C在x軸上,則△ABC周長的最小值2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.將函數(shù)f(x)=cos2x的圖象向左平移$\frac{π}{3}$個單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)( 。
A.一個對稱中心是(-$\frac{π}{3}$,0)B.一條對稱軸方程為x=$\frac{π}{3}$
C.在區(qū)間[-$\frac{π}{3}$,0]上單調(diào)遞減D.在區(qū)間[0,$\frac{π}{3}$]上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案