分析 由條件利用正弦函數(shù)的單調(diào)性,求得函數(shù)y=1+sin(-$\frac{1}{2}$x+$\frac{π}{4}$),x∈[-4π,4π]的單調(diào)減區(qū)間.
解答 解:對(duì)于函數(shù)y=1+sin(-$\frac{1}{2}$x+$\frac{π}{4}$)=1-sin($\frac{1}{2}$x-$\frac{π}{4}$),本題即求函數(shù)y=sin($\frac{1}{2}$x-$\frac{π}{4}$)的增區(qū)間.
令 2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得4kπ-$\frac{π}{2}$≤x≤4kπ+$\frac{3π}{2}$,k∈Z.
再結(jié)合x(chóng)∈[-4π,4π],可得函數(shù)y=sin($\frac{1}{2}$x-$\frac{π}{4}$)的增區(qū)間為[-4π,-$\frac{5π}{2}$]、[-$\frac{π}{2}$,$\frac{3π}{2}$]、[$\frac{7π}{2}$,4π].
即 函數(shù)y=1+sin(-$\frac{1}{2}$x+$\frac{π}{4}$),x∈[-4π,4π]的單調(diào)減區(qū)間為:[-4π,-$\frac{5π}{2}$]、[-$\frac{π}{2}$,$\frac{3π}{2}$]、[$\frac{7π}{2}$,4π].
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的書(shū)寫(xiě)思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3.5 | C. | 3 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com