已知{an}的前n項(xiàng)和為Sn=2an-2(n∈N+),
(1)求{an}的通項(xiàng)公式;
(2)若bn=
1
log4anlog4an+1
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得a1=2a1-2,n≥2時(shí),an=Sn-Sn-1=(2an-2)-(2an-1-2),從而得到{an}是首項(xiàng)為2,公比為2的等比數(shù)列,由此能求出an=2n
(2)由bn=
1
log4anlog4an+1
=
1
log42n•log42n+1
=
4
n(n+1)
=4(
1
n
-
1
n+1
),利用裂項(xiàng)求和法能求出數(shù)列{bn}的前n項(xiàng)和Tn
解答: 解:(1)∵{an}的前n項(xiàng)和為Sn=2an-2(n∈N+),
∴n=1時(shí),a1=2a1-2,解得a1=2,
n≥2時(shí),an=Sn-Sn-1=(2an-2)-(2an-1-2),
整理,得an=2an-1,
∴{an}是首項(xiàng)為2,公比為2的等比數(shù)列,
∴an=2n
(2)∵bn=
1
log4anlog4an+1
=
1
log42n•log42n+1
=
4
n(n+1)
=4(
1
n
-
1
n+1

∴Tn=4(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=4(1-
1
n+1

=
4n
n+1
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=
1
2
+
an-an2
,且a1=
1
2
,則該數(shù)列的前2015項(xiàng)的和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸出的
3
的值等于126,則判斷框中的①可以是(  )
A、i>4?B、i>5?
C、i>6?D、i>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
(1)sin(360°-α)=-sinα;
(2)cos(360°-α)=cosα;
(3)tan(360°-α)=-tanα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校體育組新買(mǎi)2個(gè)同樣籃球,3個(gè)同樣排球,從中取出4個(gè)發(fā)放給高一4個(gè)班,每班1個(gè),則共有
 
種不同的發(fā)放方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件,分別畫(huà)出函數(shù)圖象在這點(diǎn)附近的大致形狀:
(1)f(1)=-5,f′(1)=-1;
(2)f(5)=10,f′(5)=15;
(3)f(10)=20,f′(10)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+β)sin(α-β)=
1
3
,則sin2α-sin2β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2-2ax+3在區(qū)間(1,+∞)上為增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),設(shè)函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在x∈[0,π]上的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案