在平面直角坐標(biāo)系中,已知點(diǎn)E(-1,0)和F(1,0),圓E是以E為圓心,半徑為2
2
的圓,點(diǎn)P是圓E上任意一點(diǎn),線段FP的垂直平分線l和半徑EP所在的直線交于點(diǎn)Q.
(Ⅰ)當(dāng)點(diǎn)P在圓上運(yùn)動時,求點(diǎn)Q的軌跡方程T;
(Ⅱ)已知M,N是曲線T上的兩點(diǎn),若曲線T上存在點(diǎn)P,滿足
OM
+
ON
OP
(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(Ⅰ)連結(jié)QF,由已知條件推導(dǎo)出|QP|=|QF|,從而得到|QE|+|QF|=PE=2
2
,由此推導(dǎo)出點(diǎn)Q的軌跡方程T是以E(-1,0)和F(1,0)為焦點(diǎn)的橢圓,進(jìn)而能求出點(diǎn)Q的軌跡方程T.
(Ⅱ)設(shè)直線l的方程為y=kx+m,把y=kx+m代入橢圓
x2
2
+y2=1
,得(1+2k2)x2+4kx+2m2-2=0,分m=0和m≠0兩種情況進(jìn)行討論,能求出實(shí)數(shù)λ的取值范圍.
解答: 解:(Ⅰ)如圖,連結(jié)QF,
∵點(diǎn)E(-1,0)和F(1,0),
圓E是以E為圓心,半徑為2
2
的圓,點(diǎn)P是圓E上任意一點(diǎn),
線段FP的垂直平分線l和半徑EP所在的直線交于點(diǎn)Q,
∴|QP|=|QF|,∴|QE|+|QF|=PE=2
2
,
∴點(diǎn)Q的軌跡方程T是以E(-1,0)和F(1,0)為焦點(diǎn)的橢圓,
且2a=2
2
,a=
2
,c=1,∴b=1,
∴點(diǎn)Q的軌跡方程T:
x2
2
+y2=1

(Ⅱ)設(shè)經(jīng)過點(diǎn)M、N的直線為l,由題意和l的斜率存在,
設(shè)直線l的方程為y=kx+m,
把y=kx+m代入橢圓
x2
2
+y2=1
,
整理,得(1+2k2)x2+4kx+2m2-2=0,
設(shè)M(x1,y1),N(x2,y2),P(x0,y0),
x1+x2=-
4km
1+2k2
,x1x2=
2m2-2
1+2k2
,
∴y1+y2=k(x1+x2)+2m=
2m
1+2k2

①當(dāng)m=0時,點(diǎn)M,N關(guān)于原點(diǎn)對稱,則λ=0;
②當(dāng)m≠0時,點(diǎn)M,N不關(guān)于原點(diǎn)對稱,則λ≠0,
OM
+
ON
=λ
OP

∴x1+x2=λx0,y1+y2=λy0,
x0=
x1+x2
λ
=-
4km
λ(1+2k2)
,y0=
y1+y2
λ
=
2m
λ(1+2k2)

∵點(diǎn)P在
x2
2
+y2=1
上,
∴[-
4km
λ(1+2k2)
]2+2[
2m
λ(1+2k2)
]2=2,
化簡,得4m2(1+2k2)=λ2(1+k22,
∵1+2k2≠0,∴4m22(1+2k2),①
又∵△=16k2m2-4(1+2k2)(2m2-2)
=8(1+2k2-m2)>0,
∴1+2k2>m2,②
聯(lián)立①②及m≠0,得λ2<4,∴-2<λ<2,且λ≠0.
綜上所述,實(shí)數(shù)λ的取值范圍是(-2,2).
點(diǎn)評:本題考查點(diǎn)的軌跡方程的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時要認(rèn)真審題,要熟練掌握橢圓的簡單性質(zhì),注意分類討論思想的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,過橢圓
x=2cosθ
y=
3
sinθ
(θ為參數(shù))的右焦點(diǎn),且于直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、梯形可以確定一個平面
B、圓心和圓上兩點(diǎn)可以確定一個平面
C、兩條直線a,b沒有公共點(diǎn),那么a與b是異面直線
D、若a,b是兩條直線,α,β是兩個平面,且a?α,b?β,則a,b是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ的焦點(diǎn)為F1(-1,0)、F2(1,0),點(diǎn)M(1,
3
2
)
在橢圓Γ上.
(1)求橢圓Γ的方程;
(2)設(shè)雙曲線Σ:
x2
a2
-
y2
b2
=1(a>0,b>0)的頂點(diǎn)A、B都是曲線Γ的頂點(diǎn),經(jīng)過雙曲線Σ的右焦點(diǎn)F作x軸的垂線,與Σ在第一象限內(nèi)相交于N,若直線MN經(jīng)過坐標(biāo)原點(diǎn)O,求雙曲線Σ的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線上取兩個點(diǎn),將其坐標(biāo)記錄如下:A1(3,-2
3
)、A2(-2,0)、A3(4,-4)、A4
2
,
2
2
).
(Ⅰ)經(jīng)判斷點(diǎn)A1,A3在拋物線C2上,試求出C1、C2的標(biāo)準(zhǔn)方程;
(Ⅱ)求拋物線C2的焦點(diǎn)F的坐標(biāo)并求出橢圓C1的離心率;
(Ⅲ)過C2的焦點(diǎn)F直線l與橢圓C1交不同兩點(diǎn)M,N,且滿足
OM
ON
,試求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上,以P為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F2,且
OP
OF2
=2
,tan∠OPF2=
2
,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)M(-1,0),設(shè)Q是橢圓C上的一點(diǎn),過Q、M兩點(diǎn)的直線l交y軸于點(diǎn)N,若
NQ
=2
QM
,求直線l的方程;
(Ⅲ)作直線l1與橢圓D:
x2
a2
+
2y2
b2
=1
交于不同的兩點(diǎn)S,T,其中S點(diǎn)的坐標(biāo)為(-2,0),若點(diǎn)G(0,t)是線段ST垂直平分線上一點(diǎn),且滿足
GS
GT
=4
,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1﹙a>0,b>0﹚,F(xiàn)1,F(xiàn)2是其左右焦點(diǎn),若橢圓的離心率為
1
2
,橢圓的焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為3,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓上是否存在一點(diǎn)M,使點(diǎn)M到其左準(zhǔn)線的距離MN是MF1,MF2的等比中項(xiàng)?若存在,求出該點(diǎn)的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
a2
=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,短軸的兩個端點(diǎn)分別為A,B,且滿足|
F1A
+
F1B
|=|
F2A
-
F2B
|,橢圓C經(jīng)過點(diǎn)(
2
,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點(diǎn)M(
2
3
,0)且斜率為k的動直線l與橢圓C相交于P,Q兩點(diǎn),問:在x軸的正半軸上是否存在一個定點(diǎn)T,使得無論直線l如何轉(zhuǎn)動,以PQ為直徑的圓恒過定點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=2py(p>0),定點(diǎn)M(0,5),直線l:y=
p
2
與y軸交于點(diǎn)F,O為原點(diǎn),若以O(shè)M為直徑的圓恰好過l與拋物線C的交點(diǎn).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點(diǎn)M作直線交拋物線C于A,B兩點(diǎn),連AF,BF延長交拋物線分別于A′,B′,求證:拋物線C分別過A′,B′兩點(diǎn)的切線的交點(diǎn)Q在一條定直線上運(yùn)動.

查看答案和解析>>

同步練習(xí)冊答案