分析 作出不等式組對應(yīng)的平面區(qū)域,求出平面區(qū)域的面積,利用基本不等式的性質(zhì)進行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由$\left\{\begin{array}{l}{x-1=0}\\{x+y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-3}\end{array}\right.$,C(1,-3,),
由$\left\{\begin{array}{l}{x=1}\\{kx-y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=k}\end{array}\right.$,即B(1,k),
由$\left\{\begin{array}{l}{kx-y=0}\\{x+y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{-2}{1+k}}\\{y=\frac{-2k}{1+k}}\end{array}\right.$,即A($\frac{-2}{1+k}$,$\frac{-2k}{1+k}$),
則三角形的面積S=$\frac{1}{2}$×[1-($\frac{-2}{1+k}$)]×(k+3)=$\frac{1}{2}×(k+3)•\frac{k+3}{k+1}$
=$\frac{1}{2}•\frac{{k}^{2}+6k+9}{k+1}$=$\frac{1}{2}•\frac{(k+1)^{2}+4(k+1)+4}{k+1}$
=$\frac{1}{2}•$[(k+1)+$\frac{4}{k+1}$+4]
$≥\frac{1}{2}•[2\sqrt{(k+1)•\frac{4}{k+1}}+4]$
=$\frac{1}{2}×8=4$,
當(dāng)且僅當(dāng)k+1=$\frac{4}{k+1}$,即(k+1)2=4,
∵k≥0,∴k+1=2,即k=1時取等號,
故答案為:1
點評 本題主要考查線性規(guī)劃的應(yīng)用以及基本不等式的性質(zhì)的應(yīng)用,作出不等式組對應(yīng)的平面區(qū)域,求出三角形的面積是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第四象限 | B. | 第一象限 | C. | 第二象限 | D. | 第三象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而充分不條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com