在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)p(x,y)(x≥0)滿足:點(diǎn)p到定點(diǎn)F(
1
2
,0)與到y(tǒng)軸的距離之差為
1
2
.記動(dòng)點(diǎn)p的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過(guò)點(diǎn)F的直線交曲線C于A、B兩點(diǎn),過(guò)點(diǎn)A和原點(diǎn)O的直線交直線x=-
1
2
于點(diǎn)D,求證:直線DB平行于x軸.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:計(jì)算題,轉(zhuǎn)化思想,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用動(dòng)點(diǎn)p(x,y)(x≥0)滿足:點(diǎn)p到定點(diǎn)F(
1
2
,0)與到y(tǒng)軸的距離之差為
1
2
.列出關(guān)系式,即可求曲線C的軌跡方程;
(2)過(guò)點(diǎn)F的直線交曲線C于A、B兩點(diǎn),過(guò)點(diǎn)A和原點(diǎn)O的直線交直線x=-
1
2
于點(diǎn)D,設(shè)A的坐標(biāo)為(
y02
2
,y0
),求出OM的方程為y=
2
y0
x(y0≠0),推出點(diǎn)D的縱坐標(biāo)然后求出直線AF的方程,求出點(diǎn)B的縱坐標(biāo),判斷直線DB平行于x軸.即可得到結(jié)果.
解答: 解:(1)依題意:|PF|-x=
1
2
…(2分)
(x-
1
2
)2+y2
=
1
2
+x
 (x-
1
2
2+y2=(x+
1
2
2…(4分)
∴y2=2x…(6分)
注:或直接用定義求解.
(2)設(shè)A的坐標(biāo)為(
y02
2
,y0
),則OM的方程為y=
2
y0
x(y0≠0),
∴點(diǎn)D的縱坐標(biāo)為y=-
1
y0

∵F(
1
2
,0)
∴直線AF的方程為y=
y0
y02
2
-
1
2
(x-
1
2
),(y02≠1)

∴點(diǎn)B的縱坐標(biāo)為y=-
1
y0

∴BD∥x軸;當(dāng)y02=1時(shí),結(jié)論也成立,
∴直線DB平行于x軸.
點(diǎn)評(píng):本題考查曲線軌跡方程的求法,直線與圓錐曲線的位置關(guān)系,直線方程的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是
 
.(寫(xiě)出所有正確命題的序號(hào))
①函數(shù)f(x)=cos2x-2
3
sinxcosx
在區(qū)間[-
π
6
,
π
3
]
上是單調(diào)遞增的;
②在△ABC中,BC=1,B=60°,當(dāng)△ABC的面積為
3
時(shí),AB=4;
③若
a
為非零向量,且
a
b
=0,則滿足條件的向量
b
有無(wú)數(shù)個(gè);
④已知
π
2
<α<β<π
,且sinα=
5
5
,sinβ=
10
10
,則α+β=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是(  )
A、某個(gè)班級(jí)年齡較小的同學(xué)組成一個(gè)集合
B、集合{1,2,3}與{3,2,1}表示不同集合
C、2008北京奧運(yùn)會(huì)的所有比賽項(xiàng)目組成一個(gè)集合
D、由實(shí)數(shù)x,-x,|x|,
x2
,-
3x3
所構(gòu)成的集合最多含有3個(gè)元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線x=m與函數(shù)f(x)=x2+4,g(x)=2lnx的圖象分別交于點(diǎn)M、N,則當(dāng)|MN|達(dá)到最小時(shí)m的值為( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:x2=4y與橢圓E交于點(diǎn)P,點(diǎn)P在第一象限,橢圓E的兩個(gè)焦點(diǎn)分別為F1(0,1),F(xiàn)2(0,-1),|PF1|=
5
3
,直線l與橢圓E交于A、B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=2px(p>0),其準(zhǔn)線方程為x=-1,過(guò)準(zhǔn)線與x軸的交點(diǎn)M做直線l交拋物線于A、B兩點(diǎn).
(Ⅰ)若點(diǎn)A為MB中點(diǎn),求直線l的方程;
(Ⅱ)設(shè)拋物線的焦點(diǎn)為F,當(dāng)AF⊥BF時(shí),求△ABF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓4x2+y2=1,O是坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)橢圓在第一象限的部分曲線為C,動(dòng)點(diǎn)P在C上,C在點(diǎn)P處的切線與x軸、y軸的交點(diǎn)分別為G、H,以O(shè)G、OH為鄰邊作平行四邊形OGMH,求點(diǎn)M的軌跡方程;
(Ⅱ)若橢圓與x軸y軸正半軸交于A、B兩點(diǎn),直線y=kx(k>0)與橢圓交于R、S兩點(diǎn),求四邊形ARBS面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在學(xué)習(xí)完統(tǒng)計(jì)學(xué)知識(shí)后,兩位同學(xué)對(duì)所在年級(jí)的1200名同學(xué)一次數(shù)學(xué)考試成績(jī)作抽樣調(diào)查,兩位同學(xué)采用簡(jiǎn)單隨機(jī)抽樣方法抽取100名學(xué)生的成績(jī),并將所選的數(shù)學(xué)成績(jī)制成如統(tǒng)計(jì)表,設(shè)本次考試的最低期望分?jǐn)?shù)為90分,優(yōu)等生最低分130分,并且考試成績(jī)分?jǐn)?shù)在[85,90)的學(xué)生通過(guò)自身努力能達(dá)到最低期望分?jǐn)?shù).
(Ⅰ)求出各分?jǐn)?shù)段的頻率并作出頻率分布直方圖;
(Ⅱ)用所抽學(xué)生的成績(jī)?cè)诟鱾(gè)分?jǐn)?shù)段的頻率表示概率,請(qǐng)估計(jì)該校學(xué)生數(shù)學(xué)成績(jī)達(dá)到最低期望的學(xué)生分?jǐn)?shù)和優(yōu)等生人數(shù);
(Ⅲ)設(shè)考試成績(jī)?cè)赱85,90)的學(xué)生成績(jī)?nèi)缦拢?0,81,83,84,86,89,從分?jǐn)?shù)在[85,90)的學(xué)生中抽取2人出來(lái)檢查數(shù)學(xué)知識(shí)的掌握情況,記所抽取學(xué)生中通過(guò)自身努力達(dá)到最低期望分?jǐn)?shù)的人數(shù)為ξ,求ξ的分布列和期望.
分?jǐn)?shù)段 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 9 6 12 18 21 16 12 6
頻率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=(
1
4
x+(
1
2
x+1的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案