9.已知圓O:x2+y2=1,圓C:(x-3)2+(y-4)2=16,則兩圓的位置關(guān)系為相外切.(從相離、相內(nèi)切、相外切、相交中選擇一個(gè)正確答案)

分析 根據(jù)兩圓圓心之間的距離和半徑之間的關(guān)系進(jìn)行判斷.

解答 解:圓x2+y2=1的圓心O(0,0),半徑r=1,
圓(x-3)2+(y-4)2=16,圓心A(3,4),半徑R=4,
兩圓心之間的距離|AO|=5=4+1=2=R+r,
∴兩圓相外切.
故答案:相外切.

點(diǎn)評(píng) 本題主要考查圓與圓的位置關(guān)系的判斷,利用圓心距離和半徑之間的關(guān)系是解決圓與圓位置關(guān)系的主要依據(jù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.為了得到函數(shù)$y=\sqrt{2}cos3x$的圖象,可以將函數(shù)y=$\sqrt{2}$cos$\frac{3}{2}$x的圖象所有點(diǎn)的( 。
A.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)得到
B.橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變)得到
C.縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)得到
D.縱坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$(橫坐標(biāo)不變)得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.正三棱柱ABC-A1B1C1的各棱長(zhǎng)都為2,E,F(xiàn)分別為AB、A1C1的中點(diǎn),則EF的長(zhǎng)是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.不等式(2-|x|)(2+x)>0的解集為(-∞,-2)∪(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合U=R,則正確表示集合M={-1,0,1}和N={x∈Z|x2+x≤0}關(guān)系的韋恩(Venn)圖是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=2x3-6x2+7在[-1,2]上的最大值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為Sn和Tn,且$\frac{S_n}{T_n}=\frac{2n+30}{n+3}$,則使$\frac{{a}_{n}}{_{n}}$為整數(shù)的n值個(gè)數(shù)為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知全集U=R,A={x|x2-7x+10≤0},B={x|x-x2+6<0},求:
(1)A∩B   
(2)∁R(A∪B)    
(3)(∁RA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.直線y=1-x交橢圓mx2+ny2=1(m>0,n>0,且m≠n)于M、N兩點(diǎn),弦MN的中點(diǎn)為P,O為坐標(biāo)原點(diǎn),若直線OP的斜率為$\frac{1}{2}$,且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案