如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=∠ADC=90°,∠BAD=120°,AD=AB=1,AC交BD于O點.
(1)求證:平面PBD⊥平面PAC;
(2)求三棱錐D-ABP和三棱錐B-PCD的體積之比.
考點:平面與平面垂直的判定,棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:(1)先證PA⊥面ABCD,得到平面PBD⊥平面PAC.(2)在求兩三棱錐體積時,進行相應(yīng)轉(zhuǎn)化,VD-ABP=VP-ABD,VB-PCD=VP-BCD
解答: 解:(1)∵∠ABC=∠ADC=90°,AD=AB,AC為公共邊,∴Rt△ABC≌Rt△ADC,則BO=DO,又在△ABD中,AB=AD,∴△ABD為等腰三角形,∴AC⊥BD,∵PA⊥面ABCD,∴PA⊥BD,又BD?面PBD,平面PBD⊥平面PAC.
(2)在Rt△ABC中,AB=1,∠BAC=60°,BC=
3
,∵S△ABC=
1
2
AB•ADsin120°=
1
2
×1×1×
3
2
=
3
4
,S△BCD=
1
2
BC•CDsin60°=
1
2
×
3
×
3
×
3
2
=
3
3
4
,∴
VD-ABP
VB-PCD
=
VP-ABD
VP-BCD
=
1
3
S△ABD•PA
1
3
S△BCD•PA
=
S△ABD
S△BCD
=
1
3
點評:本題重點考查了空間面面垂直的判定及三棱錐體積公式,要根據(jù)體積將問題轉(zhuǎn)化是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足(z-i)(2-i)=5,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=-3x2-12x+1,x∈(-∞,-2),判斷該函數(shù)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱柱ABCD-A1B1C1D1中,M是DD1的中點.
(Ⅰ)求證:BD1∥平面AMC;
(Ⅱ)求證:AC⊥BD1
(Ⅲ)在線段BB1上是否存在點P,當(dāng)
BP
BB1
=λ時,平面A1PC1∥平面AMC?若存在,求出λ的值并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各函數(shù)的導(dǎo)函數(shù):
(1)f(x)=kx+
ax2+bx+c
;
(2)f(x)=k
ax+b
+l
cx+d
;
(3)f(x)=
(x-a)2+b2
+
(x-c)2+d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1
x=
1
2
cosα
y=3sinα
(α為參數(shù)),曲線C2:ρsin(θ+
π
4
)=
2
,將C1的橫坐標伸長為原來的2倍,縱坐標縮短為原來的
1
3
得到曲線C3
(Ⅰ)求曲線C3的普通方程,曲線C2的直角坐標方程;
(Ⅱ)若點P為曲線C3上的任意一點,Q為曲線C2上的任意一點,求線段|PQ|的最小值,并求此時的P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為菱形,點F為側(cè)棱PC上一點.
(1)若PF=FC,求證:PA∥平面BDF;
(2)若BF⊥PC,求證:平面BDF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB⊥AD,AC與BD交于點O,PA=3,AD=2,AB=2
3
,BC=6.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)求直線PO與平面PAB所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,又PA⊥底面ABCD,E為BC的中點.
(1)求證:AD⊥PE;
(2)設(shè)F是PD的中點,求證:CF∥平面PAE.

查看答案和解析>>

同步練習(xí)冊答案