已知i是虛數(shù)單位,且a,b∈R,若a+bi=
2-i
1+i
,則a+b=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由條件利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),可得a+bi=
1-3i
2
,再根據(jù)兩個(gè)復(fù)數(shù)相等的充要條件求得a、b的值,可得a+b的值.
解答: 解:∵a+bi=
2-i
1+i
,∴a+bi=
(2-i)(1-i)
(1+i)(1-i)
=
1-3i
2
,
∴a=
1
2
,b=-
3
2
,∴a+b=-1,
故答案為:-1.
點(diǎn)評(píng):本題主要考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),兩個(gè)復(fù)數(shù)相等的充要條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三角形有這樣一個(gè)性質(zhì):正三角形內(nèi)任一點(diǎn)(不與頂點(diǎn)重合)到三邊的距離和為定值.且此定值即高.類比到空間正四面體,對(duì)于空間正四面體內(nèi)任一點(diǎn)(不與頂點(diǎn)重合),關(guān)注它到四個(gè)面的距離和,請(qǐng)類比出一個(gè)正確的結(jié)論.并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心為M的動(dòng)圓M過(guò)點(diǎn)(1,0),且與直線x=-1相切,則圓心M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex-ex,其中e為自然對(duì)數(shù)的底數(shù),則函數(shù)f(x)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,給出下列命題:
①若a>b>c,則cosA>cosB>cosC;
②若A>B>C,則sinA>sinB>sinC;
③若a=40,b=20,B=25°,則△ABC有兩解;
④必存在A、B、C,使tanAtanBtanC<tanA+tanB+tanC成立.
其中,正確命題的編號(hào)為
 
.(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2x2+mx-1)在區(qū)間(1,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},新數(shù)列a1,a2-a1,a3-a2,…,an-an-1,…為首項(xiàng)為1,公比為
1
3
的等比數(shù)列,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(-2,x),若(2
a
+
b
)∥(
a
-2
b
),則實(shí)數(shù)x的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*都有a13+a23+a33+…+an3=Sn2+2Sn,其中Sn為數(shù){an}的前n項(xiàng)和,則an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案