一個(gè)空間幾何體的正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖是半徑為1的圓,則該幾何體的體積是(  )
A、
3
3
π
B、
3
π
C、
2
π
D、
2
3
π
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體為圓錐,根據(jù)正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖是半徑為1的圓,求得圓錐的高為
22-12
=
3
,把數(shù)據(jù)代入圓錐的體積公式計(jì)算.
解答: 解:由三視圖知幾何體為圓錐,
∵正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖是半徑為1的圓,
∴圓錐的高為
22-12
=
3
,
∴幾何體的體積V=
1
3
π×12×
3
=
3
3
π.
故選A.
點(diǎn)評:本題考查了由三視圖求幾何體的體積,解題的關(guān)鍵是求相關(guān)幾何量的數(shù)據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)sin(α+2β)=3sinα,則
tan(α+β)
tanβ
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
x-1
,則函數(shù)f[f(x)]的定義域是(  )
A、{x|x≠1}
B、{x|x≠2}
C、{x|x≠1且x≠2}
D、{x|x≠1或x≠2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg(1-x)的定義域?yàn)锳,值域?yàn)锽,則A∩B=(  )
A、(0,+∞)
B、(1,+∞)
C、(0,1)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

問題:①三種不同的容器中分別裝有同一型號的零件400個(gè)、200個(gè)、150個(gè),現(xiàn)在要從這750個(gè)零件中抽取一個(gè)容量為50的樣本;②從20名學(xué)生中選出3名參加座談會.
方法:Ⅰ.簡單隨機(jī)抽樣法;Ⅱ.系統(tǒng)抽樣法;Ⅲ.分層抽樣法.其中問題與方法配對合適的是( 。
A、①Ⅰ,②Ⅱ
B、①Ⅲ,②Ⅰ
C、①Ⅱ,②Ⅰ
D、①Ⅲ,②Ⅱ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x-
1
x
)=x2+
1
x2
,則f(-1)=(  )
A、3
B、
-1+
5
2
C、
-1-
5
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心為C(2,4)且與直線3x-4y=0相切,直線l過原點(diǎn)且與圓C相交于A,B兩點(diǎn),P為AB中點(diǎn).
(1)求圓C的方程;
(2)若三角形ABC為直角三角形,求直線l的方程;
(3)過點(diǎn)(0,-1)是否存在定直線q交直線l于點(diǎn)Q,且滿足|
OP
|•|
OQ
|=4,若存在,求出直線q的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:實(shí)數(shù)x滿足
x-3
x-2
<0
,命題q:實(shí)數(shù)x滿足(x-a)(x-3a)<0(a>0).
(Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn=
1
4
(an+1)2.求數(shù)列{an}的通項(xiàng)公式,并求出該數(shù)列的前10項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案