分析 化簡f(x),根據(jù)x的取值范圍,求出2x+$\frac{π}{6}$的取值范圍,從而求出f(x)的最大值,即得m的值.
解答 解:f(x)=$\sqrt{3}$sin2x+2cos2x+m
=$\sqrt{3}$sin2x+cos2x+1+m
=2($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)+1+m
=2sin(2x+$\frac{π}{6}$)+1+m,
∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
又∵sin(2x+$\frac{π}{6}$)最大值為1,
∴f(x)max=2+1+m=3,解得m=0.
故答案為:0.
點評 本題考查了三角形恒等變換的應(yīng)用,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等于1m | B. | 大于1m | C. | 小于1m | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{2π}{3}$] | B. | [$\frac{π}{2}$,$\frac{2π}{3}$] | C. | [$\frac{2π}{3}$,π] | D. | [$\frac{π}{2}$,$\frac{5π}{6}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 都與直線DA相交,且交于同一點 | B. | 互相平行 | ||
C. | 異面 | D. | 都與直線DA相交,但交于不同點 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com