16.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2cos2x+m在區(qū)間[0,$\frac{π}{2}$]上的最大值為3,則m=0.

分析 化簡f(x),根據(jù)x的取值范圍,求出2x+$\frac{π}{6}$的取值范圍,從而求出f(x)的最大值,即得m的值.

解答 解:f(x)=$\sqrt{3}$sin2x+2cos2x+m
=$\sqrt{3}$sin2x+cos2x+1+m
=2($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)+1+m
=2sin(2x+$\frac{π}{6}$)+1+m,
∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
又∵sin(2x+$\frac{π}{6}$)最大值為1,
∴f(x)max=2+1+m=3,解得m=0.
故答案為:0.

點評 本題考查了三角形恒等變換的應(yīng)用,也考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=ln|x-a|(a∈R)滿足f(3+x)=f(3-x),且f(x)在(-∞,m)單調(diào)遞減,則實數(shù)m的最大值等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.我們將若干個數(shù)x,y,z,…的最大值和最小值分別記為max(x,y,z,…)和min(x,y,z,…),已知a+b+c+d+e+f+g=1,求min[max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.梯子AB靠在墻上,梯子的底端A到墻根O的距離為2m,梯子的頂端B到地面的距離為7m,現(xiàn)將梯子的底端A向外移動到A′,使梯子的底端A′到墻根O的距離等于3m,同時梯子的頂端B下降B′,那么BB′( 。
A.等于1mB.大于1mC.小于1mD.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知:函數(shù)f(x)=5sinxcosx+5$\sqrt{3}$sin2x-$\frac{5}{2}$$\sqrt{3}$(x∈R)
(1)求f(x)的最小正周期;
(2)求f(x)的單遞增區(qū)間;
(3)求f(x)圖象的對稱軸、對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.點P的極坐標(biāo)為$(2,\frac{5π}{6})$,以極點為原點,以極軸為x軸正方向建立直角坐標(biāo)系,則點P的直角坐標(biāo)為$(-\sqrt{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=$\sqrt{3}$sinx-cosx(x∈[0,π])的單調(diào)遞減區(qū)間是(  )
A.[0,$\frac{2π}{3}$]B.[$\frac{π}{2}$,$\frac{2π}{3}$]C.[$\frac{2π}{3}$,π]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=2{cos^2}x-2\sqrt{3}sinxcosx$.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)-m=1在$[{-\frac{5π}{12},0}]$上有兩個不等實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,正方體ABCD-A′B′C′D′中,AB的中點為E,AA′的中點為F,則直線D′F和直線CE( 。
A.都與直線DA相交,且交于同一點B.互相平行
C.異面D.都與直線DA相交,但交于不同點

查看答案和解析>>

同步練習(xí)冊答案