分析 由射影性質(zhì)先求出M,再由點到直線距離公式求出點M到直線x-y=5的距離d,分m=0和m≠0,結(jié)合均值定理分別討論d的取值,由此能求出點M到直線x-y=5的距離的最大值.
解答 解:設(shè)點P(-1,0)在動直線mx+y+2-m=0(m∈R )上射影為M(a,b),
則$\left\{\begin{array}{l}{\frac{a+1}=\frac{1}{m}}\\{ma+b+2-m=0}\end{array}\right.$,解得a=$\frac{{m}^{2}-2m-1}{{m}^{2}+1}$,b=$\frac{2m-2}{{m}^{2}+1}$,
∴M($\frac{{m}^{2}-2m-1}{{m}^{2}+1}$,$\frac{2m-2}{{m}^{2}+1}$),
∴點M到直線x-y=5的距離d=$\frac{|\frac{{m}^{2}-2m-1}{{m}^{2}+1}-\frac{2m-2}{{m}^{2}+1}-5|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$•$\frac{4|{(m+\frac{1}{2})}^{2}+\frac{3}{4}|}{{m}^{2}+1}$,
當m=0時,d=2$\sqrt{2}$,
當m≠0時,
d=2$\sqrt{2}$(1+$\frac{1}{|m|+\frac{1}{|m|}}$)$≤2\sqrt{2}$(1+$\frac{1}{2}$)=3$\sqrt{2}$.
∴點M到直線x-y=5的距離的最大值是3$\sqrt{2}$.
故答案為:3$\sqrt{2}$.
點評 本題考查點到直線的距離的最大值的求法,是中檔題,解題時要認真審題,注意點到直線距離公式、均值定理的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(-1)<f(-3) | B. | f(0)>f(-1) | C. | f(-1)<f(1) | D. | f(-3)<f(-5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{8}{9}$ | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第6項 | B. | 第7項 | C. | 第8項 | D. | 第9項 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|2<x<3} | B. | {x|-$\frac{1}{2}$<x<2} | C. | {x|-1$<x<-\frac{1}{2}$} | D. | {x|-1$<x<\frac{1}{2}$或2<x<3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com