分析 利用余弦定理求出cos2α,再利用三角函數(shù)中正切的半角公式即可證得.
解答 證明:因?yàn)闄E圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$與雙曲線$\frac{{x}^{2}}{{m}^{2}}-\frac{{y}^{2}}{{n}^{2}}=1$(m>0,n>0)有公共的焦點(diǎn)F1、F2,
所以有:a2-b2=m2+n2,
不妨設(shè)兩曲線的交點(diǎn)P位于雙曲線的右支上,設(shè)|PF1|=p,|PF2|=q.
由雙曲線和橢圓的定義可得 p+q=2a,p-q=2m,
解得 p2+q2=2(a2+m2),pq=a2-m2,
在△PF1F2中,cos∠F1PF2=cos2α=$\frac{{p}^{2}+{q}^{2}-4{c}^{2}}{2pq}$=$\frac{^{2}-{n}^{2}}{2({a}^{2}-{m}^{2})}$,
∴tanα=$\frac{1-cos2α}{sin2α}$=$\frac{1-\frac{^{2}-{n}^{2}}{2({a}^{2}-{m}^{2})}}{\sqrt{1-[\frac{^{2}-{n}^{2}}{2({a}^{2}-{m}^{2})}]^{2}}}$=$\frac{n}$.
點(diǎn)評(píng) 本題主要考查圓錐曲線的綜合問題.解決本題的關(guān)鍵在于根據(jù)橢圓和雙曲線有相同的焦點(diǎn)F1、F2,及圓錐曲線的定義.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 66 | B. | 68 | C. | 72 | D. | 76 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{4}{5}$ | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{100}{101}$ | B. | $\frac{99}{100}$ | C. | $\frac{101}{102}$ | D. | $\frac{99}{101}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com