【題目】已知,.

1)當時,求處的切線方程;

2)當時,若對任意的,都存在,使得成立,求實數(shù)的取值范圍.

【答案】12

【解析】

1)將代入,可得函數(shù)解析式,再代入可得切點坐標;求得導函數(shù),并由導數(shù)的幾何意義求得切線斜率,進而得切線方程.

2)將所給方程變形可得;可得內(nèi)的單調(diào)性,進而求得值域,即可求得的值域;構造函數(shù),求得,由定義域及分類討論的單調(diào)情況,并求得最值即可求得符合題意的的取值范圍.

1)當時,,

;所以切點坐標為,

,

所以;

∴切線方程為.

化簡可得.

2,所以

對于,在上單調(diào)遞減,上單調(diào)遞增,

時,,2時,,

∴當時,.

,

對任意的,都存在,成立,

所以的值域是的子集,

時,上單調(diào)遞增,

,,解得.

時,上單調(diào)遞減,上單調(diào)遞增,

,恒成立,

下面證明恒成立.

,解得.

上單調(diào)遞增,

恒成立,

.

時,單調(diào)遞減,

,,

解得.

綜上所述.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),設直線的極坐標方程為.

(1)將曲線的參數(shù)方程化為普通方程,并指出其曲線是什么曲線;

(2)設直線軸的交點為為曲線上一動點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.

(1)y關于x的函數(shù);

(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是實數(shù),方程有兩個實根,數(shù)列滿足).

(1)求數(shù)列的通項公式(用表示);

(2)若,求的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從境外回國的8位同胞中有1位被新冠肺炎病毒感染,需要通過核酸檢測是否呈陽性來確定是否被感染.下面是兩種檢測方案:

方案一:逐個檢測,直到能確定被感染者為止.

方案二:將8位同胞平均分為2組,將每組成員的核酸混合在一起后隨機抽取一組進行檢測,若檢測呈陽性,則表明被感染者在這4位當中,然后逐個檢測,直到確定被感染者為止;若檢測呈陰性,則在另外一組中逐個進行檢測,直到確定被感染者為止.

1)根據(jù)方案一,求檢測次數(shù)不多于兩次的概率;

2)若每次核酸檢測費用都是100元,設方案二所需檢測費用為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, 、分別為、的中點, , .

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題是否正確,請說明理由:

1)若向量 同向,且,則;

2)若向,則的長度相等且方向相同或相反;

3)對于任意向量,若的方向相同,則 =

4)由于 方向不確定,故 不與任意向量平行;

5)向量平行,則向量方向相同或相反.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,橢圓的極坐標方程為,其左焦點在直線上.

(1)若直線與橢圓交于兩點,求的值;

(2)求橢圓的內(nèi)接矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面 平面,底面為梯形,,

(Ⅰ)求證:

(Ⅱ)求二面角B-PD-C的余弦值;

(Ⅲ)若M是棱PA的中點,求證:對于棱BC上任意一點F,MFPC都不平行.

查看答案和解析>>

同步練習冊答案