分析 (1)取BC,B1C1的中點(diǎn)F、G,連結(jié)FG、AF可得AF∥DE,可證AF⊥平面BB1C1C,從而證DE⊥平面BB1C1C.
(2)證明平面BC1D⊥平面BB1C1C,過(guò)C作CM⊥BC1,則CM⊥平面BC1D,可得∠BCC1是BC與平面BC1D所成角,即可得出結(jié)論.
解答 (1)證明:如圖
取BC,B1C1的中點(diǎn)F、G,連結(jié)FG、AF,∴AF⊥BC,
又AA1⊥平面ABC,BB1∥AA1
∴BB1⊥平面ABC,∴BB1⊥AF;
B1B∩BC=B,
∴AF⊥平面BB1C1C,
又AD∥EF,且AD=EF=$\frac{1}{2}$AA1,∴DE∥AF
∴DE⊥平面BB1C1C.
(2)解:∵DE⊥平面BB1C1C,DE?平面BC1D,
∴平面BC1D⊥平面BB1C1C,
過(guò)C作CM⊥BC1,則CM⊥平面BC1D,
∴∠BCC1是BC與平面BC1D所成角.
∵AB=2,AA1=2$\sqrt{3}$,
∴tan∠BCC1=$\sqrt{3}$,
∴∠BCC1=60°
點(diǎn)評(píng) 本題考查線面垂直的判定,考查線面角,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,0) | B. | (0,1) | C. | (-1,0) | D. | (0,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,3] | B. | (-∞,-1] | C. | [1,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\sqrt{x}$,g(x)=($\sqrt{x}$)2 | |||||||||
B. | f(x)=2lgx,g(x)=lgx2 | |||||||||
C. | f(x)=$\sqrt{x-1}$$\sqrt{x+1}$,g(x)=$\sqrt{{x}^{2}-1}$ | |||||||||
D. | f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{2,1<x<2}\\{3,x≥2}\end{array}\right.$,
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com