11.已知向量$\overrightarrow{a}$=(2,1),求與$\overrightarrow{a}$垂直的單位向量.

分析 利用平面向量的數(shù)量積,設(shè)出與$\overrightarrow{a}$垂直的單位向量為(x,y),然后根據(jù)長(zhǎng)度和垂直關(guān)系求值.

解答 解:設(shè)與$\overrightarrow{a}$垂直的單位向量為(x,y),由題意$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{2x+y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-\frac{\sqrt{5}}{5}}\\{y=\frac{2\sqrt{5}}{5}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=\frac{\sqrt{5}}{5}}\\{y=-\frac{2\sqrt{5}}{5}}\end{array}\right.$;
所以與$\overrightarrow{a}$垂直的單位向量為($-\frac{\sqrt{5}}{5},\frac{2\sqrt{5}}{5}$)和($\frac{\sqrt{5}}{5},-\frac{2\sqrt{5}}{5}$).

點(diǎn)評(píng) 本題考查了平面向量的長(zhǎng)度以及垂直的性質(zhì);屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,△ABC為等邊三角形,側(cè)棱AA1⊥平面ABC,AB=2,AA1=2$\sqrt{3}$,D、E分別為AA1、BC1的中點(diǎn).
(1)求證:DE⊥平面BB1C1C;
(2)求BC與平面BC1D所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿足(2cosA-1)sinB+2cosA=1.
(1)求A的大。
(2)若5b2=a2+2c2,求$\frac{sinB}{sinC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題中不正確的是( 。
A.logab•logbc•logca=1(a,b,c均為不等于1的正數(shù))
B.若xlog34=1,則${4^x}+{4^{-x}}=\frac{10}{3}$
C.函數(shù)f(x)=lnx滿足f(a+b)=f(a)•f(b)(a,b>0)
D.函數(shù)f(x)=lnx滿足f(a•b)=f(a)+f(b)(a,b>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.f(x)=ex-$\frac{a}{2}$x2-x-1(其中a∈R,e為自然數(shù)的底數(shù)),g(x)=f′(x)為f(x)的導(dǎo)函數(shù).
(1)求函數(shù)g(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)在R上存在最小值,且最小值為0,求實(shí)數(shù)a的值;
(3)求證:當(dāng)x≥0時(shí),ex-x-1≥$\frac{1}{2}$xsinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求函數(shù)y=$\frac{\sqrt{-2{x}^{2}+x+10}}{|x|-2}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,A=120°,則sinB+sinC的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.直線y=-xsinθ+1的傾斜角的取值范圍是[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在極坐標(biāo)系下,過(guò)直線ρcosθ+ρsinθ=2$\sqrt{2}$上任意一點(diǎn)M,作曲線ρ=1的兩條切線,則這兩條切線的夾角的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案