坐標系與參數(shù)方程選做題極坐標方程分別為的兩個圓的圓心距為____________;

試題分析:先將原極坐標方程兩邊同乘以ρ后化成直角坐標方程,再利用直角坐標方程求出圓心距即可解:將極坐標方程C1:ρ=2cosθ和C2:ρ=sinθ, 分別化為普通方程C1:ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2=2x⇒(x-1)2+y2=1,C2:ρ=sinθ⇒ρ2=ρsinθ⇒x2+y2=y⇒x2+(y-)2=()2,然后就可解得兩個圓的圓心距為d= 
點評:本題考查點的極坐標和直角坐標的互化,能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.利用直角坐標與極坐標間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,曲線的參數(shù)方程為,為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓 已知曲線上的點對應的參數(shù),射線與曲線交于點
(1)求曲線,的方程;
(2)若點,在曲線上,求的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標方程為
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C相交于M,N兩點,求M,N兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在極坐標系中,已知點,則兩點間的距離是       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

點的極坐標為,則點的直角坐標是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在極坐標系中,圓=2上的點到直線=3的距離的最小值是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在極坐標系中,過點的直線與極軸的夾角,若將的極坐標方程寫成的形式,則               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在極坐標系(ρ)()中,曲線的交點的極坐標為           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在直角坐標平面內(nèi),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系,點的極坐標是,曲線C的極坐標方程為
(I)求點的直角坐標和曲線C的直角坐標方程;
(II)若經(jīng)過點的直線與曲線C交于A、B兩點,求的最小值.

查看答案和解析>>

同步練習冊答案
<source id="txqer"><del id="txqer"><cite id="txqer"></cite></del></source>
<span id="txqer"></span>

  • <source id="txqer"></source>