我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對(duì)數(shù)得lny=g(x)lnf(x),再兩邊同時(shí)求導(dǎo)得到:
1
y
•y′=g′(x)lnf(x)+g(x)
1
f(x)
•f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)
1
f(x)
•f′(x)],運(yùn)用此方法求得函數(shù)y=x 
1
x
的一個(gè)單調(diào)遞增區(qū)間是
 
考點(diǎn):類比推理,函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:計(jì)算題,新定義
分析:根據(jù)定義,先求原函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0,解不等式即可
解答: 解:由題意知y′=x
1
x
•(-
1
x
•lnx+
1
x
1
x
•1
)=x
1
x
1-lnx
x2
,(x>0)
令y'>0,得1-lnx>0
∴0<x<e
∴原函數(shù)的單調(diào)增區(qū)間為(0,e)
故答案是(0,e).
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,要求首先讀懂定義,并熟練掌握導(dǎo)數(shù)運(yùn)算,同時(shí)要注意函數(shù)的定義域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線f(x)=ex在點(diǎn)(x0,f(x0))處的切線經(jīng)過(guò)點(diǎn)P(1,0),則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向一個(gè)邊長(zhǎng)分別為3,4,5的三角形內(nèi)投一根針,則針尖不落在三角形的內(nèi)切圓內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O的方程為x2+y2=3,且P(x,y)是圓O上任意一點(diǎn),則
x+y-5
x-2
的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2kx2+kx-
3
8

(1)若f(x)有零點(diǎn),求k的取值范圍;
(2)若f(x)<0對(duì)一切x∈R都成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3-3x+a有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分解因式(x2+3x)2-2(x2+3x)-8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x1和x2(x1<x2)分別是一元二次方程3x2+4x-1=0的兩根
求:(1)x1-x2
(2)(x1-2)(x2-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線y=2x2的一條切線l與直線x+4y-8=0垂直,則切線l的方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案