分解因式(x2+3x)2-2(x2+3x)-8=
 
考點(diǎn):因式分解定理
專題:計(jì)算題
分析:把x2+3x看作整體,利用十字相乘法,分解因式,分解為x的一次冪的多個(gè)因式乘積.
解答: 解:(x2+3x)2-2(x2+3x)-8
=(x2+3x+2)(x2+3x-4)
=(x+1)(x+2)(x+4)(x-1)
故答案為:(x+1)(x+2)(x+4)(x-1).
點(diǎn)評:本題考查了十字相乘法因式分解,一個(gè)多項(xiàng)式看作整體,同時(shí)因式分解要徹底,直到不能分解為x的一次冪為止.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+2,g(x)=|x2-1|,x∈R.
(1)若函數(shù)f(x)滿足f(3+x)=f(-x),求使不等式f(x)≥g(x)成立的x的取值集合;
(2)若函數(shù)h(x)=f(x)+g(x)+2在(0,2)上有兩個(gè)不同的零點(diǎn)x1,x2求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(4,5),
b
=(8,y)且
a
b
,則y等于( 。
A、5
B、10
C、
32
5
D、15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們常用以下方法求形如y=f(x)g(x)的函數(shù)的導(dǎo)數(shù):先兩邊同取自然對數(shù)得lny=g(x)lnf(x),再兩邊同時(shí)求導(dǎo)得到:
1
y
•y′=g′(x)lnf(x)+g(x)
1
f(x)
•f′(x),于是得到:y′=f(x)g(x)[g′(x)lnf(x)+g(x)
1
f(x)
•f′(x)],運(yùn)用此方法求得函數(shù)y=x 
1
x
的一個(gè)單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga
1+x
1-x
(其中a>1).
(Ⅰ)求f(x)的定義域;
(Ⅱ)判斷f(x)的奇偶性,并給予證明;
(Ⅲ)求使f(x)>0的x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=logb
x2-2x+2
4-x
(b>0且b≠1)
(1)求f(x)的定義域;
(2)當(dāng)b>1時(shí),求使f(x)>0的所有x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)cos100°=k,則tan80°=(  )
A、
1-k2
k
B、-
1-k2
k
C、±
1-k2
k
D、±
k
1-k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x2-2ax-1在區(qū)間[-1,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了考察甲、乙兩種小麥的長勢,分別從中抽取了10株苗,測得苗高如下(單位:cm):
甲:12,13,14,15,10,16,13,11,5,11;
乙:8,16,15,14,13,11,10,11,10,12;
則下列說法正確的是( 。
A、甲的平均苗高比乙
B、乙的平均苗高比甲高
C、平均苗高一樣,甲長勢整齊
D、平均苗高一樣,乙長勢整齊

查看答案和解析>>

同步練習(xí)冊答案