【題目】已知函數(shù),對(duì)于任意的 ,都有, 當(dāng)時(shí),,且.

( I ) 求的值;

(II) 當(dāng)時(shí),求函數(shù)的最大值和最小值;

(III) 設(shè)函數(shù),判斷函數(shù)g(x)最多有幾個(gè)零點(diǎn),并求出此時(shí)實(shí)數(shù)m的取值范圍.

【答案】(I);(II);(III)當(dāng) 時(shí),函數(shù)最多有個(gè)零點(diǎn).

【解析】

(Ⅰ)根據(jù)條件,取特殊值求解;

(Ⅱ)根據(jù)定義,判斷函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最值;

(Ⅲ)根據(jù)定義,判斷函數(shù)為奇函數(shù),得出gx)=fx2﹣2|x|﹣m),令gx)=0即fx2﹣2|x|﹣m)=0=f(0),根據(jù)單調(diào)性可得 x2﹣2|x|﹣m=0,根據(jù)二次函數(shù)的性質(zhì)可知最多有4個(gè)零點(diǎn),且m∈(﹣1,0).

(I)令,得.

(II)任取,則,

因?yàn)?/span>,即,

.

由已知時(shí),,則,

所以 ,

所以函數(shù)在R上是減函數(shù),

單調(diào)遞減.

所以,

,

,得 ,

,

.

(III) 令代入,

所以,故為奇函數(shù).

=

=

,

,即,

因?yàn)楹瘮?shù)在R上是減函數(shù),

所以,即,

所以當(dāng) 時(shí),函數(shù)最多有4個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】醫(yī)藥公司針對(duì)某種疾病開(kāi)發(fā)了一種新型藥物,患者單次服用制定規(guī)格的該藥物后,其體內(nèi)的藥物濃度隨時(shí)間的變化情況(如圖所示):當(dāng)時(shí),的函數(shù)關(guān)系式為為常數(shù));當(dāng)時(shí),的函數(shù)關(guān)系式為為常數(shù)).服藥后,患者體內(nèi)的藥物濃度為,這種藥物在患者體內(nèi)的藥物濃度不低于最低有效濃度,才有療效;而超過(guò)最低中毒濃度,患者就會(huì)有危險(xiǎn).

(1)首次服藥后,藥物有療效的時(shí)間是多長(zhǎng)?

(2)首次服藥1小時(shí)后,可否立即再次服用同種規(guī)格的這種藥物?

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義區(qū)間[x1 , x2]長(zhǎng)度為x2﹣x1(x2>x1),已知函數(shù)f(x)= (a∈R,a≠0)的定義域與值域都是[m,n],則區(qū)間[m,n]取最大長(zhǎng)度時(shí)a的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某高中數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中抽取50名同學(xué)(男3020),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

合計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

合計(jì)

30

20

50

(1)能否據(jù)此判斷有的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?

(2)以上列聯(lián)表中女生選做幾何題的頻率作為概率,從該校1500名女生中隨機(jī)選6名女生,記6名女生選做幾何題的人數(shù)為,求的數(shù)學(xué)期望和方差.

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實(shí)數(shù) b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣∞,3)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長(zhǎng)為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把這樣的數(shù)稱(chēng)為三角形數(shù),而把

這樣的數(shù)稱(chēng)為正方形數(shù).如圖,可以發(fā)現(xiàn)任何一個(gè)大于正方形數(shù)都可以看作兩個(gè)相鄰

三角形數(shù)之和,下列四個(gè)等式:;②;③;

中符合這一規(guī)律的等式是_____________.(填寫(xiě)所有正確結(jié)論的編號(hào))

……

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知).

(1)當(dāng)時(shí),求關(guān)于的不等式的解集;

(2)若fx)是偶函數(shù),求k的值;

(3)在(2)條件下,設(shè),若函數(shù)的圖象有公共點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,為兩個(gè)不同的平面,,為兩條不同的直線,下列命題中正確的是( )

①若,,則 ②若,,則;

③若,,,則 ④若,,,則.

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

同步練習(xí)冊(cè)答案