已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P是橢圓上一點(diǎn),點(diǎn)M是線段PF1的中點(diǎn),且|OF1|=2|OM|,OM⊥PF1,則橢圓的離心率為( 。
A、
3
-1
B、
3
3
C、
2
-1
D、
2
2
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由已知條件利用橢圓定義推導(dǎo)出
3
c+c=2a,由此能求出橢圓的離心率.
解答: 解:如圖,∵橢
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)
分別是F1、F2,O為坐標(biāo)原點(diǎn),
點(diǎn)P是橢圓上的一點(diǎn),點(diǎn)M為PF1的中點(diǎn),
|OF1|=2|OM|,且OM⊥PF1,
∴PF1⊥PF2,|PF2|=c,∠PF1F2=30°,|F1F2|=2c,
∴|PF1|=
3
c,
由橢圓定義知
3
c+c=2a,∴a=
3
+1
2
c,
∴e=
c
a
=
3
-1.
故選:A.
點(diǎn)評(píng):本題考查橢圓的離心率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
tanα
1-tanα
=1,則
1
csc2α
+
1
cosαcscα
+
1
sec2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{a1}的首項(xiàng)a1=1,前n項(xiàng)和Sn滿足an=2(
Sn
+
Sn-1
)(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{
1
Sn
}的前n項(xiàng)和為T(mén)n,求證:Tn
5
4
(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求極坐標(biāo)系中,圓ρ=2上的點(diǎn)到直線ρ(cosθ+
3
sinθ)=6的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某簡(jiǎn)單幾何體的一條對(duì)角線長(zhǎng)為a,在該幾何體的正視圖、側(cè)視圖與俯視圖中,這條對(duì)角線的投影都是長(zhǎng)為
2
的線段,則a=( 。
A、
2
B、
3
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知口袋里有5個(gè)紅球,15個(gè)白球,則從口袋里任取一個(gè)球,取到的是紅球的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4cosxsin(x+
π
3
)-
3

(1)求函數(shù)f(x)的周期及單調(diào)增區(qū)間.
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過(guò)怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

表示滿足(x-y)(x+2y-2)≥0的點(diǎn)(x,y)所在的區(qū)域應(yīng)為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若2、b、10成等差數(shù)列,則b=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案