設(shè)函數(shù)f(x)=x+
a
x
+lnx(x>0),若對?x>0,都有f(x)>3成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)恒成立問題
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:若f(x)=x+
a
x
+lnx>3恒成立,則a>3x-x•lnx-x2恒成立,構(gòu)造函數(shù)h(x)=3x-x•lnx-x2,利用導(dǎo)數(shù)法求出函數(shù)的最大值,可得實(shí)數(shù)a的取值范圍.
解答: 解:∵若f(x)=x+
a
x
+lnx>3恒成立,
則a>3x-x•lnx-x2恒成立,
令h(x)=3x-x•lnx-x2
則h′(x)=3-lnx-1-2x=2-2x-lnx
∵當(dāng)0<x<1時(shí),h′(x)>0,
當(dāng)x>1時(shí),h′(x)<0,
故當(dāng)x=1時(shí),h(x)取得最大值2,
故a>2,
即實(shí)數(shù)a的取值范圍為(2,+∞)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,導(dǎo)數(shù)法求函數(shù)的最值,其中將恒成立問題轉(zhuǎn)化為函數(shù)最值問題是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一廠家向用戶提供的一箱產(chǎn)品共12件,其中有2件次品,用戶先對產(chǎn)品進(jìn)行抽檢以決定是否接收.抽檢規(guī)則是這樣的:一次取一件產(chǎn)品檢查(取出的產(chǎn)品不放回箱子),若前三次沒有抽查到次品,則用戶接收這箱產(chǎn)品;若前三次中一抽查到次品就立即停止抽檢,并且用戶拒絕接收這箱產(chǎn)品.
(Ⅰ)求這箱產(chǎn)品被用戶接收的概率;
(Ⅱ)記抽檢的產(chǎn)品件數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-ax2+lnx,a≥0,當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)2×(
32
×
3
6+(
2
2
)
4
3
-4×(
16
49
)
1
2
-
42
×80.25+(-2014)0
(2)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地一漁場的水質(zhì)受到了污染.漁場的工作人員對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì).已知每投放質(zhì)量為m(m∈N*)個(gè)單位的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足y=mf(x),其中f(x)=
log3(x+4),0<x≤5
6
x-2
,x>5
,當(dāng)藥劑在水中釋放的濃度不低于6(毫克/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于6(毫克/升)且不高于18(毫克/升)時(shí)稱為最佳凈化.
(Ⅰ)如果投放的藥劑質(zhì)量為m=6,試問漁場的水質(zhì)達(dá)到有效凈化一共可持續(xù)幾天?
(Ⅱ)如果投放的藥劑質(zhì)量為m,為了使在8天(從投放藥劑算起包括第8天)之內(nèi)的漁場的水質(zhì)達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+bx+c(其中b,c為實(shí)常數(shù)).
(1)若b>2,且y=f(sinx)的最大值為5,最小值為-1,求函數(shù)的解析式;
(2)是否存在這樣的函數(shù)y=f(x),使得{y|y=x2+bx+c,-1≤x≤0}=[-1,0],若存在,求出f(x)的解析式;
(3)已知集合A={x|x2+Bx+C=x}中有且僅有一個(gè)元素,若f[f(x0)]=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三(1)班共有40名學(xué)生,他們每天自主學(xué)習(xí)的時(shí)間全部在180分鐘到330分鐘之間,按他們學(xué)習(xí)時(shí)間的長短分5個(gè)組統(tǒng)計(jì),得到如下頻率分布表:
組別 分組 頻數(shù) 頻率
第一組 [180,210)   0.1
第二組 [210,240) 8 s
第三組 [240,270) 12 0.3
第四組 [270,300) 10 0.25
第五組 [300,330)   t
(1)求分布表中s,t的值;
(2)王老師為完成一項(xiàng)研究,按學(xué)習(xí)時(shí)間用分層抽樣的方法從這40名學(xué)生中抽取20名進(jìn)行研究,問應(yīng)抽取多少名第一組的學(xué)生?
(3)已知第一組學(xué)生中男、女生人數(shù)相同,在(2)的條件下抽取的第一組學(xué)生中,既有男生又有女生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知定義在R上的函數(shù)f(x),對任意實(shí)數(shù)x1,x2都有f(x1+x2)=1+f(x1)+f(x2),且f(1)=1.
(1)若對任意正整數(shù)n,有an=f(
1
2n
)+1,求a1、a2的值,并證明{an}為等比數(shù)列;
(2)設(shè)對任意正整數(shù)n,有bn=
1
f(n)
,若不等式bn+1+bn+2+…+b2n
6
35
log2(x+1)對任意不小于2的正整數(shù)n都成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案