已知復數(shù)z=1-i,則
z2-2z
z-1
=
 
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:代入復數(shù)z,然后利用復數(shù)的代數(shù)形式的混合運算法則,求解即可.
解答: 解:復數(shù)z=1-i,則
z2-2z
z-1
=
(1-i)2-2(1-i)
(1-i)-1
=
-2
-i
=
2i
i•i
=-2i.
故答案為:-2i;
點評:本題考查復數(shù)的代數(shù)形式的混合運算,復數(shù)實數(shù)化是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C1:(x-1)2+(y-2)2=1
(1)求過點P(2,4)所作的圓C1的切線方程;
(2)若圓C1與圓C2:(x+1)2+(y-1)2=4相交于A、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若三棱錐的三條側(cè)棱兩兩垂直,且側(cè)棱長均為2,則其外接球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=35,an+1-an=2n-1(n∈N*),則
an
n
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanα=2,則sin2α+2sinαcosα+3cos2α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩條平行線3x+4y-6=0和6x+8y+3=0間的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x-2|-|2x-a|,a∈R.
(1)當a=3時,解不等式f(x)>0;
(2)當x∈(-∞,2)時,f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
x+1
x2
在點(1,m)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,過圓ρ=4cosθ的圓心,且垂直于極軸的直線的極坐標方程是( 。
A、ρ=sinθ
B、ρ=1
C、ρcosθ=2
D、ρsinθ=2

查看答案和解析>>

同步練習冊答案