設(shè)α,β,γ為兩兩不重合的平面,m,n為兩條不重合的直線,給出下列四個命題:
①若α⊥γ,β∥γ,則α⊥β;
②若α∥γ,β∥γ,則α∥β;
③若m∥α,n∥α,則m∥n;
④若α⊥γ,β⊥γ,α∩β=m,則m⊥γ;
其中真命題的個數(shù)是( 。
A、1B、2C、3D、4
考點:命題的真假判斷與應(yīng)用,空間中直線與平面之間的位置關(guān)系,平面與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:根據(jù)直線和平面的位置關(guān)系和平面與平面的位置關(guān)系對選項加以一一判斷,選出正確的命題.
解答: 解:對①,應(yīng)用面面垂直的性質(zhì)定理和面面平行的性質(zhì)可知①對;
對②,由面面平行的傳遞性可知②也對;
對③,若m∥α,n∥α,則m∥n或m,n相交或異面,故③錯;
對④,應(yīng)用面面垂直的性質(zhì)定理或聯(lián)想開門動作,容易得④也對.
所以真命題的個數(shù)是3,
故選:C.
點評:本題主要考查平面與平面的位置關(guān)系,以及直線與平面的位置關(guān)系和直線與直線的位置關(guān)系,考查學(xué)生的空間想象能力和推理能力,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,設(shè)a、b∈R,且
2+bi
a-i
=
1
2
-i 則a+bi=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=log0.40.3,b=log54,c=log20.8,則a,b,c由小到大的順序是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-3,-1,0},B={-7,-4,5,6},從兩個集合中各取一個元素作為點的坐標(biāo),則表示不在第一、二象限內(nèi)的點的個數(shù)為( 。
A、12B、14C、18D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,主視圖和側(cè)視圖為全等的直角梯形,俯視圖為直角三角形.則該幾何體的表面積為(  )
A、6+12
2
B、16+12
2
C、6+12
3
D、16+12
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1
i
的共軛復(fù)數(shù)是( 。
A、iB、-iC、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:f(x)=sin(x+
π
2
),在△ABC中,a、b、c分別為∠ABC的對邊,已知a=1,b=
2
,f(A)=
3
2
,求∠C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓C與圓C1:(x+1)2+y2=1相外切,與圓C2:(x-1)2+y2=9相內(nèi)切,設(shè)動圓圓心C的軌跡為T,且軌跡T與x軸右半軸的交點為A.
(Ⅰ)求軌跡T的方程;
(Ⅱ)已知直線l:y=kx+m與軌跡為T相交于M、N兩點(M、N不在x軸上).若以MN為直徑的圓過點A,求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知I=R,集合A={x|x2-3x+2≤0},集合B與∁RA的所有元素組成全集R,集合B與∁RA的元素公共部分組成集合{x|0<x<1或2<x<3},求集合B.

查看答案和解析>>

同步練習(xí)冊答案