【題目】已知函數(shù).

1)當時,求曲線在點處的切線方程.

2)當時,若對任意的,都有,求實數(shù)a的取值范圍.

【答案】1;(2.

【解析】

1)求得的導數(shù),可得切線的斜率和切點,由點斜式方程可得所求切線方程;

2)求得的導數(shù),討論,的單調(diào)區(qū)間,考慮,的單調(diào)性,求得最小值,可令其不小于,解不等式可得所求范圍.

解:(1)當時,,

所以,

所以曲線在點處的切線斜率

,所以曲線在點處的切線方程為,即.

2)由,

.

時,,上單調(diào)遞增,

,顯然成立;

時,由,得;

,得,

所以上單調(diào)遞減,在上單調(diào)遞增.

時,,上單調(diào)遞減,

所以,

所以對任意的,都有等價于,

,

解得,

,所以;

②當時,,

所以上的最小值為.

又當時,,顯然成立.

綜上,實數(shù)a的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,菱形所在的平面,中點,上的點.

1)求證:平面平面;

2)若的中點,當時,是否存在點,使直線與平面的所成角的正弦值為?若存在,請求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C和橢圓有公共的焦點,且離心率為

1)求雙曲線C的方程.

2)經(jīng)過點M2,1)作直線l交雙曲線CA,B兩點,且MAB的中點,求直線l的方程并求弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中,角所對的邊分別為,滿足

1)求的大。

2)如圖,,在直線的右側(cè)取點,使得.當角為何值時,四邊形面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓離心率為,四個頂點構(gòu)成的四邊形的面積是4.

(1)求橢圓C的標準方程;

(2)若直線與橢圓C交于P,Q均在第一象限,直線OPOQ的斜率分別為,,且(其中O為坐標原點).證明:直線l的斜率k為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,ABAC,A1CBC1,AB1BC1,DE分別是AB1BC的中點.

求證:(1)DE∥平面ACC1A1

(2)AE⊥平面BCC1B1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).M是曲線上的動點,將線段OM繞O點順時針旋轉(zhuǎn)得到線段ON,設點N的軌跡為曲線.以坐標原點O為極點,軸正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(除極點外),且有定點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出如下四個命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案