【題目】計(jì)算下列各式的值:
(1) ﹣( )0+( )﹣0.5+ ;
(2)lg500+lg ﹣ lg64+50(lg2+lg5)2 .
【答案】
(1)解: ﹣( )0+( )﹣0.5+ = +1﹣1+ +e﹣ = +e
(2)解:lg500+lg ﹣ lg64+50(lg2+lg5)2=lg5+2+3lg2﹣lg5﹣3lg2+50(lg10)2
=lg5+2+3lg2﹣lg5﹣3lg2+50=52
【解析】(1)直接利用有理指數(shù)冪的運(yùn)算法則化簡(jiǎn)求解即可.(2)利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.
【考點(diǎn)精析】本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握①加法:②減法:③數(shù)乘:④⑤才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對(duì)名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在名男性駕駛員中,平均車速超過(guò)的有人,不超過(guò)的有人;在名女性駕駛員中,平均車速超過(guò)的有人,不超過(guò)的有人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為平均車速超過(guò)100與性別有關(guān);
平均車速超過(guò)人數(shù) | 平均車速不超過(guò)人數(shù) | 合計(jì) | |
男性駕駛?cè)藬?shù) | |||
女性駕駛?cè)藬?shù) | |||
合計(jì) |
(Ⅱ)在被調(diào)查的駕駛員中,按分層抽樣的方法從平均車速不超過(guò)的人中抽取人,再?gòu)倪@人中采用簡(jiǎn)單隨機(jī)抽樣的方法隨機(jī)抽取人,求這人恰好為名男生、名女生的概率.
參考公式與數(shù)據(jù):,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合P={y|y=( )x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為( )
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,焦點(diǎn)F在軸正半軸上,準(zhǔn)線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點(diǎn),命題:“若直線過(guò)定點(diǎn)(0,1),則 ”,
請(qǐng)判斷命題的真假,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解關(guān)于x的不等式f(x)<4,結(jié)果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線有共同的焦點(diǎn)F1,F2,且|F1F2|=,橢圓的長(zhǎng)半軸與雙曲線實(shí)半軸之差為4,離心率之比為3∶7.
(1)求這兩曲線的方程;
(2)若P為這兩曲線的一個(gè)交點(diǎn),求cos∠F1PF2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數(shù)的f(x)的一個(gè)根為1.
(1)求函數(shù)f(x)的解析式;
(2)對(duì)任意的x∈[ ,+∞),方程4mf(x)+f(x﹣1)=4﹣4m有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市衛(wèi)生防疫部門為了控制某種病毒的傳染,提供了批號(hào)分別為的五批疫苗,供全市所轄的三個(gè)區(qū)市民注射,每個(gè)區(qū)均能從中任選其中一個(gè)批號(hào)的疫苗接種.
(1)求三個(gè)區(qū)注射的疫苗批號(hào)中恰好有兩個(gè)區(qū)相同的概率;
(2)記三個(gè)區(qū)選擇的疫苗批號(hào)的中位數(shù)為,求 的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四種說(shuō)法:
①命題“”為假,則、至少一個(gè)為假;
②命題“一次函數(shù)都是單調(diào)函數(shù)”的否定是“一次函數(shù)都不是單調(diào)函數(shù)”;
③動(dòng)點(diǎn)到點(diǎn) 與到點(diǎn)的距離之和為2,則點(diǎn)的軌跡是焦點(diǎn)在軸上的橢圓;
④命題“若直線與雙曲線相切,則該直線與雙曲線只有一個(gè)公共點(diǎn)”的逆命題是真命題.
其中正確的有__________.(填寫序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com