分析 (1)利用等面積,可得$\sqrt{(16-m)(m-7)}$=$\frac{1}{2}×3×\frac{4\sqrt{2}}{3}$,即可求實(shí)數(shù)m的值:
(2)以AB為直徑的圓與圓C外切有$\frac{|AB|}{2}$+1=|QC|,可得x0+2=$\sqrt{({x}_{0}-4)^{2}+{{y}_{0}}^{2}}$①,分類(lèi)討論,利用斜率相等,可得${{y}_{0}}^{2}$=2(x0-1)②,即可得出結(jié)論.
解答 解:(1)拋物線y2=4x的焦點(diǎn)F(1,0),圓的圓心為(4,0),圓的半徑為$\sqrt{16-m}$,則
利用等面積,可得$\sqrt{(16-m)(m-7)}$=$\frac{1}{2}×3×\frac{4\sqrt{2}}{3}$,∴m=8或15;
(2)若m>12,則m=15,圓C:(x-4)2+y2=1,半徑為1.
設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)坐標(biāo)為(x0,y0)
由拋物線定義可知$\frac{|AB|}{2}$=x0+1,∴以AB為直徑的圓與圓C外切有$\frac{|AB|}{2}$+1=|QC|,
∴x0+2=$\sqrt{({x}_{0}-4)^{2}+{{y}_{0}}^{2}}$①
當(dāng)AB斜率不存在時(shí),Q與F重合,x0=1,此時(shí)$\frac{|AB|}{2}$+1=|QC|,符合題意;
當(dāng)AB斜率存在時(shí),x0≠1,由$\left\{\begin{array}{l}{{{y}_{1}}^{2}=4{x}_{1}}\\{{{y}_{2}}^{2}=4{x}_{2}}\end{array}\right.$,可得kAB=$\frac{4}{{y}_{1}+{y}_{2}}$=$\frac{2}{{y}_{0}}$,
∵kAB=$\frac{{y}_{0}}{{x}_{0}-1}$,
∴$\frac{2}{{y}_{0}}$=$\frac{{y}_{0}}{{x}_{0}-1}$,
∴${{y}_{0}}^{2}$=2(x0-1)②,
聯(lián)立①②,解得x0=1(矛盾),
綜上所述,存在直線AB:x=1,符合條件.
點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查拋物線的定義,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com