1.已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=14
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{b_n}{2^n}={a_n}+{n^2}$,求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)通過(guò)a3+a5=a2+a4=14,a3a5=45,求出數(shù)列的公差,然后求解通項(xiàng)公式.
(2)求出${b_n}={2^n}(2n+1),(n≥2)$,然后利用錯(cuò)位相減法,求解前n項(xiàng)和.

解答 解:(1)∵a3+a5=a2+a4=14,a3a5=45,
∴a3=5,a5=9或a3=9,a5=5…(1分)
∵d>0,∴a3=5,a5=9…(2分)
∴$\left\{\begin{array}{l}{a_3}={a_1}+2d=5\\{a_5}={a_1}+4d=9\end{array}\right.,⇒{a_1}=1,d=2$,
∴an=2n-1…(4分)
(2)由$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{b_n}{2^n}={a_n}+1$,得:$\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{b_n}{2^n}=2n-1+{n^2}$
又 $\frac{b_1}{2}+\frac{b_2}{2^2}+…+\frac{{{b_{n-1}}}}{{{2^{n-1}}}}=2(n-1)-1+{(n-1)^2}$,(n≥2),…(5分)
兩式相減得:$\frac{b_n}{2^n}=2n+1$,
∴${b_n}={2^n}(2n+1),(n≥2)$…(6分)
又$\frac{b_1}{2}={a_1}+1$,則b1=4,…(7分)
∴${b_n}=\left\{\begin{array}{l}{2^n}(2n+1),n≥2\\ 4,n=1\end{array}\right.$…(8分)
記${T_n}={b_2}+{b_3}+…{b_n}={2^2}(5)+{2^3}(7)+…+{2^n}(2n+1)$$2{T_n}={2^3}(5)+{2^4}(7)+…+{2^{n+1}}(2n+1)$…(9分)
相減得:$-{T_n}=4+{2^{n+1}}(1-2n)$
則${T_n}={2^{n+1}}(2n-1)-4$,…(11分)
∴${s_n}={2^{n+1}}(2n-1)$…(12分)

點(diǎn)評(píng) 本題考查等差數(shù)列以及等比數(shù)列通項(xiàng)公式的應(yīng)用,數(shù)列求和的基本方法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.(1+tan12°)(1-tan147°)=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,已知正△ABC的邊長(zhǎng)為2,E、F、G分別是AB,BC,CA上的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長(zhǎng)為x,則y關(guān)于x的函數(shù)圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a為常數(shù)且a∈R).
(1)當(dāng)a=1時(shí)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>1時(shí),若$\frac{1}{2}$x2+lnx+b<$\frac{2}{3}$x3恒成立,求實(shí)常數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.經(jīng)過(guò)圓(x-1)2+y2=1的圓心M,且與直線x-y=0垂直的直線方程是x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)$f(x)={({\frac{1}{2}})^x}$在區(qū)間[0,1]上的最大值與最小值的和為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.過(guò)坐標(biāo)原點(diǎn)且與點(diǎn)($\sqrt{3}$,1)的距離都等于1的兩條直線的夾角為( 。
A.90°B.45°C.30°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.過(guò)拋物線y2=4x的焦點(diǎn)F作圓C:x2+y2-8x+m=0的切線,切點(diǎn)為M、N,且|MN|=$\frac{4\sqrt{2}}{3}$.
(1)求實(shí)數(shù)m的值:
(2)若m>12,直線l經(jīng)過(guò)點(diǎn)F,與拋物線交于點(diǎn)A、B,是否存在直線l,使AB為直徑的圓與圓C外切,若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明則由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f(f($\frac{1}{2}$))=4,則b=( 。
A.-1B.-$\frac{2}{3}$C.-1或-$\frac{2}{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案