1.若關(guān)于x的方程(x-2)(x2-4x+m)=0有三個根,且這三個根恰好可以作為一個三角形的三條邊的長,則m的取值范圍是(3,4].

分析 根據(jù)一元二次方程x2-4x+m=0有兩個正根可得m>0且△=16-4m≥0,再根據(jù)三角形三邊關(guān)系確定m的范圍.

解答 解:∵(x-2)•(x2-4x+m)=0有三個根(允許相等),
∴設(shè)這三根為:x1=2,x2,x3,不妨設(shè)x2≤x3
即x2,x3為方程x2-4x+m=0的兩正根,
所以,m>0且△=16-4m≥0,解得0<m≤4,
∵這三個根恰好可以作為一個三角形的三條邊的長,
∴兩邊之和:x2+x3=4=2x1,則x2≤2≤x3,
兩邊之差:|x2-x3|<2,
即(x2+x32-4x2x3<4,
所以,16-4m<4,解得m>3,
因此,3<m≤4,
故實(shí)數(shù)m的取值范圍是(3,4].

點(diǎn)評 本題主要考查了一元二次方程根的分布,以及三角形三邊大小關(guān)系的確定,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)α、β、γ為彼此不重合的三個平面,l為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ;
②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;
③若直線l與平面α內(nèi)的無數(shù)條直線垂直,則直線l與平面α垂直;
④若α內(nèi)存在不共線的三點(diǎn)到β的距離相等,則平面α平行于平面β.
上述命題中,正確命題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在等比數(shù)列{an}中,a1=1,且a2是a1與a3-1的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${b_n}=\frac{{1+n(n+1){a_n}}}{n(n+1)}(n∈{N^*})$.求數(shù)列{bn}的前n項(xiàng)和$S_n^{\;}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若$\frac{S_n}{T_n}=\frac{2n}{3n+1}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{19}{29}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,∠BAC=90°,M為BB1的中點(diǎn),N為BC的中點(diǎn).
(1)求點(diǎn)M到直線AC1的距離;
(2)求點(diǎn)N到平面MA1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知sinα-sinβ=$\frac{{\sqrt{6}}}{3},cosα-cosβ=\frac{{\sqrt{3}}}{3}$,則$|{cos\frac{α-β}{2}}$|=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$y=\sqrt{1+2x}+\sqrt{1-2x}$的值域?yàn)椋ā 。?table class="qanwser">A.$[{1,\sqrt{2}}]$B.[2,4]C.$[{\sqrt{2},2}]$D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.國家規(guī)定個人稿費(fèi)納稅辦法是:不超過800元的不納稅;超過800元而不超過4000元的按超過800元部分的14%納稅;超過4000元的按全部稿酬的11.2%納稅,已知某人出版一本書,共納稅420元,則這個人應(yīng)得稿費(fèi)(扣稅前)為( 。
A.2800元B.3000元C.3800元D.3818元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=x2-mx+2m的一個零點(diǎn)大于1,另一個零點(diǎn)小于1,則實(shí)數(shù)m的取值范圍為m<-1.

查看答案和解析>>

同步練習(xí)冊答案