A. | $f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$ | B. | $f(x)=\sqrt{x^2},g(x)=|x|$ | ||
C. | f(1)=1,g(x)=x0 | D. | $f(x)=x+1,g(x)=\frac{{{x^2}-1}}{x-1}$ |
分析 分別判斷兩個(gè)函數(shù)的定義域和對應(yīng)法則是否一致,否則不是同一函數(shù).
解答 解:A.f(x)的定義域?yàn)镽,而g(x)的定義域?yàn)閇0,+∞),所以定義域不同,所以A不是同一函數(shù).
B.f(x)=|x|,所以兩個(gè)函數(shù)的定義域和對應(yīng)法則一致,所以B表示同一函數(shù).
C.f(x)的定義域?yàn)镽,而g(x)的定義域?yàn)椋?∞,0)∪(0,+∞),所以定義域不同,所以C不是同一函數(shù).
D.f(x)的定義域?yàn)镽,而g(x)的定義域?yàn)椋?∞,1)∪(1,+∞),所以定義域不同,所以D不是同一函數(shù).
故選:B.
點(diǎn)評(píng) 本題主要考查判斷兩個(gè)函數(shù)是否為同一函數(shù),判斷的標(biāo)準(zhǔn)就是判斷兩個(gè)函數(shù)的定義域和對應(yīng)法則是否一致,否則不是同一函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,﹢∞) | B. | (-∞,1] | C. | (-1,1] | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 12 | C. | 16 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在(0,$\frac{π}{2}$)單調(diào)遞減 | B. | f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)單調(diào)遞減 | ||
C. | f(x)在(0,$\frac{π}{2}$)單調(diào)遞增 | D. | f(x)在($\frac{π}{4}$,$\frac{3π}{4}$)單調(diào)遞增 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com