等比數(shù)列{an}的首項為3,公比為2,其前n項和記為Sn;比數(shù)列{bn}的首項為2,公比為3,其前n項和記為Tn,則
lim
n→∞
an+bn
Sn+Tn
=( 。
A、
1
2
B、1
C、
2
3
D、2
考點(diǎn):數(shù)列的極限,等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:求出等比數(shù)列的通項與前n項和,即可得出結(jié)論.
解答: 解:∵等比數(shù)列{an}的首項為3,公比為2,其前n項和記為Sn;等比數(shù)列{bn}的首項為2,公比為3,其前n項和記為Tn,
∴an+bn=3•2n-1+2•3n-1,Sn+Tn=
3(1-2n)
1-2
+
2(1-3n)
1-3
=4+3•2n+3n,
lim
n→∞
an+bn
Sn+Tn
=
3•2n-1+2•3n-1
4+3•2n+3n
=
2
3

故選:C.
點(diǎn)評:本題考查等比數(shù)列的通項與前n項和,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex(sinx-cosx),若0≤x≤2014π,則函數(shù)f(x)的各極大值之和為( 。
A、
eπ(1-e1007π)
1-eπ
B、
eπ(1-e2014π)
1-e
C、
eπ(1-e1007π)
1-e
D、
eπ(1-e2014π)
1-eπ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,則復(fù)數(shù)
2i
1+i
等于( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足:f(x+π)=
f(x)
π
,且x∈[-
π
2
,
π
2
]時,f(x)=xsinx+cosx-
π
2
,則當(dāng)x∈[-3π,-2π]時,f(x)的最小值為( 。
A、
2π3-π4
2
B、
2π2-π3
2
C、
2-π
D、
2-π
2π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx+x2+ax,若曲線y=f(x)存在與直線2x-y=0平行的切線,則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-2]
B、(-∞,-2)
C、(-2,+∞)
D、[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx-x,則下列錯誤的是(  )
A、f(x)為奇函數(shù)
B、f(x)在R上單調(diào)遞減
C、f(x)在R上無極值點(diǎn)
D、f(x)在R上有三個零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的是( 。
A、命題“若a<b,則am2<bm2”的否命題是真命題
B、已知x∈R,則“x>1”是“x>2”的充分不必要條件
C、命題“存在x∈R,x2-x>0”的否定是“對任意x∈R,x2-x<0”
D、用反證法證明命題“若a2+b2=0,則a,b全為0”(a,b∈R)時,應(yīng)反設(shè)為a、b全不為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x, x>0
0,         x=0
x2+mx, x<0
是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)=k有三個不同的實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,且點(diǎn)P(an,an+1)(n∈N*)在直線2x-y=0上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
n
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案