【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣3,3x4﹣2,3x5﹣2的平均數(shù)和方差分別為(
A.2,
B.4,3
C.4,
D.2,1

【答案】B
【解析】解:∵x1 , x2 , …,x5的平均數(shù)是2,則x1+x2+…+x5=2×5=10.
∴數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)是: ′= [(3x1﹣2)+(3x2﹣2)+(3x3﹣2)+(3x4﹣2)+(3x5﹣2)]= [3×(x1+x2+…+x5)﹣10]=4,
S′2= ×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],
= ×[(3x1﹣6)2+…+(3x5﹣6)2]=9× [(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識(shí),掌握⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù),以及對(duì)極差、方差與標(biāo)準(zhǔn)差的理解,了解標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時(shí),樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒(méi)有離散性;方差與原始數(shù)據(jù)單位不同,解決實(shí)際問(wèn)題時(shí),多采用標(biāo)準(zhǔn)差.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)f(x),當(dāng)x>0時(shí)f(x)=x+ ,則f(﹣1)=(
A.1
B.2
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 + +…+ =an﹣1(n∈N*),求數(shù)列{nbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】醫(yī)院到某社區(qū)檢查老年人的體質(zhì)健康情況,從該社區(qū)全體老人中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根據(jù)老年人體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于80的為優(yōu)良.
(1)將頻率視為概率,根據(jù)樣本估計(jì)總體的思想,在該社區(qū)全體老年人中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(2)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的人數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面

(2)若,點(diǎn)在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若f(x)滿足 >0,f(2﹣x)=f(x)e22x則下列判斷一定正確的是(
A.f(1)<f(0)
B.f(3)>e3f(0)
C.f(2)>ef(0)
D.f(4)<e4f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), , 為自然對(duì)數(shù)的底數(shù)).

(1)試討論函數(shù)的極值情況;

(2)證明:當(dāng)時(shí),總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明. 下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用股+(股-勾)朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn),得勾2+股2=弦2. 設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. 134 B. 866 C. 300 D. 500

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

同步練習(xí)冊(cè)答案