【題目】如圖,四棱錐,底面側面,分別為的中點,且,,,.
(I)證明:平面;
(II)設,求三棱錐的體積.
【答案】(I)證明見解析;(II).
【解析】
試題分析:(I)借助題設條件運用線面垂直的判定定理推證;(II)借助題設運用三棱錐的體積公式探求.
試題解析:
(I)證明:由題意知為等腰直角三角形,而為的中點,所以,..........2分
又因為平面平面,且,所以平面,................3分
而平面,所以,所以平面,
連結,則,,而,,.......................5分
所以,,是平行四邊形,所以,平面...........6分
(II)因為平面,即平面,是三棱錐的高,........8分
所以,..........................................10分
于是三棱錐的體積為........12分
科目:高中數(shù)學 來源: 題型:
【題目】某高校大一新生中的6名同學打算參加學校組織的“雅荷文學社”、“青春風街舞社”、“羽乒協(xié)會”、“演講團”、“吉他協(xié)會”五個社團,若每名同學必須參加且只能參加1個社團且每個社團至多兩人參加,則這6個人中至多有1人參加“演講團”的不同參加方法數(shù)為( )
A. 4680 B. 4770 C. 5040 D. 5200
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若滿足:對任意的,都有恒成立,試確定實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:
試根據圖表中的信息解答下列問題:
(1)求全班的學生人數(shù)及分數(shù)在[70,80)之間的頻數(shù);
(2)為快速了解學生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分數(shù)段的試卷中抽取8份進行分析,再從中任選3人進行交流,求交流的學生中,成績位于[70,80)分數(shù)段的人數(shù)X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的離心率為,連接橢圓的四個頂點得到的四邊形的面積為.
(1)求橢圓的方程;
(2)設橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點,求點的軌跡的方程;
(3)設為坐標原點,取上不同于的點,以為直徑作圓與相交另外一點,求該圓面積的最小值時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設,求的內切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經統(tǒng)計,某醫(yī)院一個結算窗口每天排隊結算的人數(shù)及相應的概率如下:
排除人數(shù) | 0--5 | 6--10 | 11--15 | 16--20 | 21--25 | 25人以上 |
概率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)求每天超過20人排隊結算的概率;
(2)求2天中,恰有1天出現(xiàn)超過20人排隊結算的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com