A. | (0,e) | B. | (1,e) | C. | (e,+∞) | D. | [e,+∞) |
分析 令f′(x)=$\frac{1}{x}$-a,得f(x)在(a-1,+∞)上是單調(diào)減函數(shù).同理,f(x)在(0,a-1)上是單調(diào)增函數(shù).求得g(x)的導(dǎo)數(shù),求得單調(diào)區(qū)間,由題意可得lna>1,求交集能求出a的取值范圍.
解答 解:f(x)=lnx-ax的導(dǎo)數(shù)f′(x)=$\frac{1}{x}$-a,
考慮到f(x)的定義域為(0,+∞),
故a>0,進而解得x>a-1,
即f(x)在(a-1,+∞)上是單調(diào)減函數(shù).
同理,f(x)在(0,a-1)上是單調(diào)增函數(shù).
由于f(x)在(1,+∞)上是單調(diào)減函數(shù),
故(1,+∞)⊆(a-1,+∞),從而a-1≤1,即a≥1.
令g′(x)=ex-a=0,得x=lna.
當(dāng)x<lna時,g′(x)<0;當(dāng)x>lna時,g′(x)>0.
又g(x)在(1,+∞)上有最小值,所以lna>1,
即a>e.綜上,有a∈(e,+∞).
故選:C.
點評 本題主要考查了利用函數(shù)的導(dǎo)數(shù)求出函數(shù)的單調(diào)性以及函數(shù)的極值問題,考查學(xué)生分析解決問題的能力,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com