己知函數(shù) .
(I)求的極大值和極小值;
(II)當(dāng)時(shí),恒成立,求的取值范圍.
(I)的極大值為;的極小值為.(II)的取值范圍是.

試題分析:(I) 易知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024628365303.png" style="vertical-align:middle;" />,在上討論的極值先求導(dǎo),列出的正負(fù)表,再根據(jù)函數(shù)的單調(diào)性和極值與倒數(shù)的關(guān)系即可求出極值.
(II) 本題是不等式恒成立求參數(shù)范圍問(wèn)題,一般思路是化簡(jiǎn)-分類討論,但本題中化簡(jiǎn)后為,如果用換元后為討論起來(lái)更簡(jiǎn)單.分別討論?時(shí),化簡(jiǎn)為;?時(shí),恒成立;?時(shí)化簡(jiǎn)為三種情況,運(yùn)用均值不等式求出范圍即可.
試題解析:(I) 函數(shù),知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024628365303.png" style="vertical-align:middle;" />,.
所以的變化情況如下:









+
0
-
0
+
0
-

遞增
極大值
遞減
極小值
遞增
極大值
遞減
所以的極大值為;的極小值為.
(II) 當(dāng)時(shí),恒成立,化簡(jiǎn)為,令
,代入化簡(jiǎn)為.?當(dāng)時(shí),即,等價(jià)于
,當(dāng)且僅當(dāng)時(shí),即等號(hào)成立.所以的取子范圍是;?當(dāng)時(shí),即,不等式恒成立;?當(dāng)時(shí),即,
等價(jià)于,當(dāng)且僅當(dāng)時(shí),即等號(hào)成立.所以的取子范圍是;綜上的取值范圍是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是函數(shù)的一個(gè)極值點(diǎn).
(1)求的關(guān)系式(用表示),并求的單調(diào)遞增區(qū)間;
(2)設(shè),若存在使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),其中,
(Ⅰ)若的最小值為,試判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是函數(shù)的兩個(gè)極值點(diǎn),其中
(1)求的取值范圍;
(2)若,求的最大值.注:e是自然對(duì)數(shù)的底.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若是增函數(shù),求的取值范圍;
(2)已知,對(duì)于函數(shù)圖象上任意不同兩點(diǎn),,其中,直線的斜率為,記,若求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)若處取得極大值,求實(shí)數(shù)的值;
(2)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)均為正常數(shù)),設(shè)函數(shù)處有極值.
(1)若對(duì)任意的,不等式總成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)上是增函數(shù),
(1)求實(shí)數(shù)的取值集合;
(2)當(dāng)取值集合中的最小值時(shí),定義數(shù)列;滿足,求數(shù)列的通項(xiàng)公式;
(3)若,數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)如果函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù),使得函數(shù)在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn)(是自然對(duì)數(shù)的底數(shù))?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案