設(shè)函數(shù)f(x)=x(ex-ae-x)為R上的偶函數(shù),則實(shí)數(shù)a的值為
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的定義,建立方程即可得到結(jié)論.
解答: 解:∵函數(shù)f(x)=x(ex-ae-x)為R上的偶函數(shù),
∴f(-x)=f(x),
即-x(e-x-aex)=x(ex-ae-x),
即-e-x+aex=ex-ae-x
即(a-1)(ex-e-x)=0,
解得a=1,
故答案為:1
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的應(yīng)用,根據(jù)偶函數(shù)的定義建立方程f(-x)=f(x)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P為△ABC的外心,且
PA
+
PB
=
PC
,則∠ACB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(x+a)≤f(-2)在x∈[0,3]上恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)m,n滿(mǎn)足
m
1+i
=1-ni,則復(fù)數(shù)z=m+ni的模|z|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)
2
3
<m<1時(shí),復(fù)數(shù)z=3m-2+(m-1)i在復(fù)平面上的對(duì)應(yīng)點(diǎn)位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從學(xué)號(hào)為1號(hào)至50號(hào)的高一某班50名學(xué)生中隨機(jī)選取5名同學(xué)參加數(shù)學(xué)測(cè)試,采用系統(tǒng)抽樣的方法,則所選5名學(xué)生的學(xué)號(hào)可能是( 。
A、1,2,3,4,5
B、5,15,25,35,45
C、2,4,6,8,10
D、4,13,22,31,40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要得到函數(shù)y=
2
cosx的圖象,只要將函數(shù)y=
2
sin(x+
π
4
)的圖象(  )
A、向左平移
π
4
個(gè)長(zhǎng)度單位
B、向右平移
π
4
個(gè)長(zhǎng)度單位
C、向左平移
π
8
個(gè)長(zhǎng)度單位
D、向右平移
π
8
個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若a>b,則2a>2b-1”的否命題為( 。
A、若a>b,則有2a≤2b-1
B、若a≤b,則有2a≤2b-1
C、若a≤b,則有2a>2b-1
D、若2a≤2b-1,則有a≤b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx-x,則f(x)的單調(diào)減區(qū)間是( 。
A、(-∞,1)
B、(0,1)
C、(-∞,0)和(1,+∞)
D、(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案