函數(shù)y=
x
lnx
的定義域?yàn)椋ā 。?/div>
A、(0,1)∪(1,+∞)
B、(1,+∞)
C、(0,1)
D、(0,+∞)
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,即可求出函數(shù)的定義域.
解答: 解:要使函數(shù)有意義,則
x≥0
lnx≠0
,
x≥0
x>0且x≠1

即x>0且x≠1,
則函數(shù)的定義域?yàn)椋?,1)∪(1,+∞),
故選:A.
點(diǎn)評(píng):本題注意考查函數(shù)定義域的求法,要求熟練掌握常見函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α∈(
π
2
,π),且sinα=
3
5
,則tan2α=(  )
A、
7
24
B、-
7
24
C、
24
7
D、-
24
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足:a1=-
1
4
,an=1-
1
an-1
(n>1),則a4=( 。
A、
4
5
B、
1
4
C、
1
5
D、-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2xex在P點(diǎn)處的切線斜率是2,則P點(diǎn)的橫坐標(biāo)為(  )
A、2B、0C、-1D、ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,A、B滿足關(guān)系式:
1
tanA•tanB
>0,則△ABC是( 。
A、銳角三角形
B、鈍角三角形
C、直角三角形
D、任意三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線 
x2
4
-
y2
9
=-1的焦點(diǎn)的坐標(biāo)是( 。
A、(±
5
,0)
B、(±
13
,0)
C、( 0,±
5
D、(0,±
13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=(cosθ+i)(2sinθ-i)是純虛數(shù),θ∈[0,2π),則θ=(  )
A、
π
4
B、
4
C、
4
D、
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A=30°,b=2
3
,a=2,則角B等于(  )
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,△ABC是邊長(zhǎng)等于2的正三角形,且∠PCA=∠PCB.
(Ⅰ)求證:PC⊥AB; 
(Ⅱ)設(shè)正△ABC的中心為O,△PAB的重心為G,求證:OG∥平面PAC;
(Ⅲ)當(dāng)側(cè)面PBC⊥底面ABC時(shí),二面角P-AB-C與二面角A-PC-B的大小恰好相等.
①求證:PC⊥底面ABC; 
②求二面角A-PB-C的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案