7.若函數(shù)$f(x)=lnx+ax+\frac{1}{x}$在[1,+∞)上是單調(diào)函數(shù),則a的取值范圍是(  )
A.$(-∞,0]∪[\frac{1}{4},+∞)$B.$(-∞,-\frac{1}{4}]∪[0,+∞)$C.$[-\frac{1}{4},0]$D.(-∞,1]

分析 由求導(dǎo)公式和法則求出f′(x),由條件和導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分類討論,分別列出不等式進行分離常數(shù),再構(gòu)造函數(shù)后,利用整體思想和二次函數(shù)的性質(zhì)求出函數(shù)的最值,可得a的取值范圍.

解答 解:由題意得,f′(x)=$\frac{1}{x}+a-\frac{1}{{x}^{2}}$,
因為$f(x)=lnx+ax+\frac{1}{x}$在[1,+∞)上是單調(diào)函數(shù),
所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,
①當(dāng)f′(x)≥0時,則$\frac{1}{x}+a-\frac{1}{{x}^{2}}≥0$在[1,+∞)上恒成立,
即a≥$\frac{1}{{x}^{2}}-\frac{1}{x}$,設(shè)g(x)=$\frac{1}{{x}^{2}}-\frac{1}{x}$=$(\frac{1}{x}-\frac{1}{2})^{2}-\frac{1}{4}$,
因為x∈[1,+∞),所以$\frac{1}{x}$∈(0,1],
當(dāng)$\frac{1}{x}$=1時,g(x)取到最大值是:0,
所以a≥0,
②當(dāng)f′(x)≤0時,則$\frac{1}{x}+a-\frac{1}{{x}^{2}}≤0$在[1,+∞)上恒成立,
即a≤$\frac{1}{{x}^{2}}-\frac{1}{x}$,設(shè)g(x)=$\frac{1}{{x}^{2}}-\frac{1}{x}$=$(\frac{1}{x}-\frac{1}{2})^{2}-\frac{1}{4}$,
因為x∈[1,+∞),所以$\frac{1}{x}$∈(0,1],
當(dāng)$\frac{1}{x}$=$\frac{1}{2}$時,g(x)取到最大值是:$-\frac{1}{4}$,
所以a≤$-\frac{1}{4}$,
綜上可得,a≤$-\frac{1}{4}$或a≥0,
所以數(shù)a的取值范圍是(-∞,$-\frac{1}{4}$]∪[0,+∞),
故選:B.

點評 本題查求導(dǎo)公式和法則,導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,以及恒成立問題的轉(zhuǎn)化,考查分離常數(shù)法,整體思想、分類討論思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平面直角坐標(biāo)系中,點M是由不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≥4}\end{array}\right.$,所確定的平面區(qū)域內(nèi)的動點,N是圓x2+y2=1上任意一點,0為坐標(biāo)原點,則|$\overrightarrow{OM}$+$\overrightarrow{ON}$|的最小值為2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.經(jīng)過點C(4,0),且傾斜角是$\frac{3π}{4}$的直線的極坐標(biāo)方程是ρcosθ+ρsinθ-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知PA⊥矩形ABCD所在的平面,M、N分別是AB、PC的中點,若AD=PA=a,$AB=\sqrt{2}a$.
(1)在PC上是否存在一點Q,使得AQ∥平面MND?若存在,求出該點的位置,若不存在,請說明理由;
(理)(2)求二面角N-MD-C大小.
(文)(2)求三棱錐P-MND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.近期,雙十中學(xué)首屆游泳比賽在新建成的韓振東游泳館中舉行,在前期報名中,同學(xué)們也都表現(xiàn)出了極大的興趣.為了確保賽事的順利進行,學(xué)校邀請了湖里區(qū)游泳協(xié)會的相關(guān)人員前來協(xié)助,還在學(xué)校征招了8名同學(xué)當(dāng)志愿者,其中有5名男同學(xué),3名女同學(xué),為了活動的需要,要從這8名同學(xué)中隨機抽取3名同學(xué)去執(zhí)行一項特殊任務(wù),記其中有X名男同學(xué).
(1)求X的分布列;
(2)求去執(zhí)行任務(wù)的同學(xué)中有男有女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列五個命題:
①命題?x∈R,cosx>0的否定是?x∈R,cosx≤0;
②函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-4})$的單調(diào)遞增區(qū)間是(-∞,0);
③已知命題p:?x∈R,sin(π-x)=sinx;命題q:α,β均是第一象限的角,且α>β,則sinα>sinβ,則p∧?q是真命題;
④定義在R上的函數(shù)f(x)對于任意x的都有$f(x-2)=-\frac{4}{f(x)}$,則f(x)為周期函數(shù);
⑤命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題是真命題.
則其正確的命題為①③④.(填上所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.經(jīng)過直線$l:x+y-2\sqrt{2}=0$上的點P,向圓O:x2+y2=1引切線,切點為A,則切線長|PA|的最小值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知不等式x(x+a)≤b的解集是{x|0≤x≤1},那么a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)A={3},B={3,5},則下列表達關(guān)系不正確的是( 。
A.A?BB.A⊆BC.3∈BD.5⊆B

查看答案和解析>>

同步練習(xí)冊答案