已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}滿足bn=log2(an+1),a1=1且對(duì)于任意n≥2,n∈N+有an=2an-1+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列,由此能求出{an}的通項(xiàng)公式.
(2)cn=anbn=n(2n-1)=n•2n-n,由此利用分組求和法和錯(cuò)位相減求和法能求出數(shù)列{cn}的前n項(xiàng)和Tn
解答: 解:(1)∵an=2an-1+1,∴an+1=2(an-1+1),
∴{an+1}是以a1+1=2為首項(xiàng),2為公比的等比數(shù)列.
an+1=2n,∴an=2n-1.…(4分)
(2)∵bn=log2(an+1),∴bn=n,
cn=anbn=n(2n-1)=n•2n-n…(5分)
使用分組求和:T'=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n
2T'=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,
兩式相減:-T'=2+22+23+…+2n-1+2n-n×2n+1
=-2(1-2n)-n•2n+1
∴T'=2+(n-1)•2n+1…(10分)
T″=1+2+3+…+n=
(1+n)n
2
…(11分)
∴數(shù)列{cn}的前n項(xiàng)和Tn=T=T′-T″=2+(n-1)•2n+1-
n(1+n)
2
.…(12分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意分組求和泊和錯(cuò)位相減求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,且對(duì)任意n∈N+有Sn=2an-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若不等式a2n-k•an+64≥0對(duì)任意n∈N+恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二項(xiàng)式(x2+
1
2
x
n(n∈N*)展開式中,前三項(xiàng)的二項(xiàng)式系數(shù)和為56,求展開式中的常數(shù)項(xiàng);
(2)(1-2x)2014=a0+a1x+a2x2+…+a2014x2014(x∈R)
①求
a1
2
+
a2
22
+
a3
23
+…+
a2014
22014
的值;
②求a1+2a2+3a3+4a4+…+2014a2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(
1
2
x-
π
3
),x∈R,
(1)求f(
3
)的值;
(2)設(shè)α,β∈[0,
π
2
],f(2α+
3
)=
10
13
,f(2β+
3
)=
6
5
,α,β∈[0,
π
2
],求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
2
2
AD.
(1)求證:面PAB⊥平面PDC; 
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為平行四邊形,AB=1,AC=1,BC=
2
,點(diǎn)E在PC上,AE⊥PC.
(Ⅰ)證明:PC⊥平面ABE;
(Ⅱ)若∠PDC的大小為60度,求二面角B-AE-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx+siny=
1
3
,求siny-cos2x的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱(側(cè)棱和底面垂直的棱柱)ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中點(diǎn),F(xiàn)是CC1上一點(diǎn),且CF=2a.
(Ⅰ)求證:B1F⊥平面ADF;
(Ⅱ)求二面角F-AD-C的正切值;
(Ⅲ)試在AA1上找一點(diǎn)E,使得BE∥平面ADF,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx=
2
3
,x∈(
π
2
,π),則角x=
 
(用反三角函數(shù)符號(hào)表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案