【題目】設(shè)a為實數(shù),函數(shù),x∈R.
(1)討論的奇偶性;
(2)若x≥a,求的最小值.
【答案】(1)a=0時為偶函數(shù),a≠0時f(x)為非奇非偶函數(shù);(2)a2+1.
【解析】
試題分析:(1)判斷函數(shù)奇偶性首先判斷定義是否對稱,其次判斷的關(guān)系;(2)由x≥a去掉絕對值轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)對稱軸求解函數(shù)最小值
試題解析:(1)當a=0時,函數(shù),此時為偶函數(shù).
當a≠0時,,,.
此時函數(shù)f(x)為非奇非偶函數(shù).
(2)當x≥a時,函數(shù).
若a≤-,則函數(shù)在上的最小值為.
若a>-,則函數(shù)在上單調(diào)遞增,從而,函數(shù)在上的最小值為f(a)=a2+1.
綜上,當a≤-時,函數(shù)f(x)的最小值是-a.
當a>-時,函數(shù)f(x)的最小值是a2+1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù).
(1)請寫出函數(shù)與函數(shù)在的單調(diào)區(qū)間(只寫結(jié)論,不證明);
(2)求函數(shù)的最值;
(3)討論方程實根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從12件同類產(chǎn)品中(其中10件正品,2件次品),任意抽取6件產(chǎn)品,下列說法中正確的是( )
A. 抽出的6件產(chǎn)品必有5件正品,1件次品
B. 抽出的6件產(chǎn)品中可能有5件正品,1件次品
C. 抽取6件產(chǎn)品時,逐個不放回地抽取,前5件是正品,第6件必是次品
D. 抽取6件產(chǎn)品時,不可能抽得5件正品,1件次品
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:, 過拋物線C上點M且與M處的切線垂直的直線稱為拋物線C在點M的法線.
(1)若拋物線C在點M的法線的斜率為,求點M的坐標;
(2)設(shè)P為C對稱軸上的一點,在C上是否存在點,使得C在該點的法線通過點P.若有,求出這些點,以及C在這些點的法線方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機變量ξ+η=8,若ξ~B(10,0.6),則E(η),D(η)分別是 ( )
A. 6和2.4 B. 2和2.4
C. 2和5.6 D. 6和5.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由算得,.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
C.有99%以上的把握認為“愛好該項運動與性別有關(guān)”
D.有99%以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).
(I)求的分布列;
(II)若要求,確定的最小值;
(III)以購買易損零件所需費用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù),若對于定義域中的任意,都有恒成立,則稱函數(shù)為“爬坡函數(shù)”.
(1)證明:函數(shù)是爬坡函數(shù);
(2)若函數(shù)是爬坡函數(shù),求實數(shù)m的取值范圍;
(3)若對任意的實數(shù)b,函數(shù)都不是爬坡函數(shù),求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求不等式a2x﹣1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知是定義在R上的奇函數(shù),且當時, ,求函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com