1.已知函數(shù)y=Asin(wx+j)(A>0,w>0,|j|<$\frac{π}{2}$)的圖象如圖所示,則A=$\sqrt{3}$,w=2,j=$-\frac{π}{3}$.

分析 根據(jù)三角函數(shù)的最值求出A,根據(jù)函數(shù)的周期求出w,利用特殊點的坐標(biāo)求出j,即可.

解答 解:由圖象知A=$\sqrt{3}$,
函數(shù)的周期T=2×($\frac{7π}{6}-\frac{2π}{3}$)=2×$\frac{π}{2}$=π,
即$\frac{2π}{w}$=π,∴w=2,
則y=$\sqrt{3}$sin(2x+j),
當(dāng)x=$\frac{2π}{3}$時,y=$\sqrt{3}$sin(2×$\frac{2π}{3}$+j)=0,
則sin($\frac{4π}{3}$+j)=0,
即$\frac{4π}{3}$+j=kπ,即j=kπ-$\frac{4π}{3}$,
∵|j|<$\frac{π}{2}$,
∴當(dāng)k=1時,j=π-$\frac{4π}{3}$=-$\frac{π}{3}$,
故答案為:$\sqrt{3},2,-\frac{π}{3}$

點評 本題主要考查三角函數(shù)解析式的求解,根據(jù)三角函數(shù)的圖象進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.學(xué)校要組織一次田徑暨游藝運動會.為了測試該運動的受歡迎程度,全校從6000名學(xué)生(其中男生2800名)按性別進行了分層抽樣調(diào)查,抽查到的男生有140人.
(1)抽查到的女生有多少名;
(2)將抽查的情況進行統(tǒng)計得下表:
 喜愛不太喜愛總計
男生10040 
女生 100 
總計   
請將上表填寫完整.并由此說明是否有99.9%的把握認(rèn)為“喜愛該活動”與性別有關(guān)?
附表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.1000.0500.0250.010 0.001 
k2.7063.8415.0246.63510.828
(3)高一四個班組成四個隊,分別選擇“搭橋過河”,“推球”,“跳大繩”三個游藝項目,且每個隊的選擇相互獨立,設(shè)選“搭橋過河”的隊數(shù)為X,試求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求過點M(-2,1)和N(4,3)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\left\{\begin{array}{l}{x=\frac{3at}{1+{t}^{2}}}\\{y=\frac{3a{t}^{2}}{1+{t}^{2}}}\end{array}\right.$求在t=2處的切線方程和法線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某初級中學(xué)有學(xué)生270人,其中一年級108人,二、三年級各81人,現(xiàn)要利用抽樣方法抽取10人參加某項調(diào)查,考慮選用簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機抽樣和分層抽樣時,將學(xué)生按一、二、三年級依次統(tǒng)一編號為1,2,…,270;使用系統(tǒng)抽樣時,將學(xué)生統(tǒng)一隨機編號為1,2,…,270,并將整個編號依次分為10段,如果抽得號碼有下列四種情況:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
關(guān)于上述樣本的下列結(jié)論中,不正確的是(  )
A.①可能是分層抽樣,也可能是系統(tǒng)抽樣
B.②可能是分層抽樣,不可能是系統(tǒng)抽樣
C.③可能是分層抽樣,也可能是系統(tǒng)抽樣
D.④可能是分層抽樣,也可能是系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{x}{x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)證明:{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{{3}^{n}}{2}$anan+1,Sn=b1+b2+…+bn,求證:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.變量x,y滿足條件$\left\{\begin{array}{l}{x-y+1≤0}\\{y≤1}\\{x≥-1}\end{array}\right.$,則(x-1)2+y2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=log3x,則f(-9)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=lg(x2-2x)的單調(diào)增區(qū)間為(  )
A.(2,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,2)

查看答案和解析>>

同步練習(xí)冊答案