分析 (1)由不等式|f(x)-2|≤5,可得-7≤2x+1≤7,由此求得它的解集.
(2)由題意可得|2x+1|+|2x-1|+m≠0 恒成立.利用絕對(duì)值三角不等式可得|2x+1|+|2x-1|≥2,可得m的范圍.
解答 解:(1)由不等式|f(x)-2|≤5,可得-5≤f(x)-2≤5,-3≤f(x)≤7,即|2x+1|≤7,
即-7≤2x+1≤7,即-4≤x≤3,故不等式|f(x)-2|≤5的解集為[-4,3].
(2)由g(x)=$\frac{1}{f(x)+f(x-1)+m}$=$\frac{1}{|2x+1|+|2x-1|+m}$ 的定義域?yàn)镽,
對(duì)任意實(shí)數(shù)x,有|2x+1|+|2x-1|+m≠0 恒成立.
因?yàn)閨2x+1|+|2x-1|≥|2x+1-(2x-1)|=2,所以m>-2.
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,絕對(duì)值三角不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{9}$ | B. | $\frac{11}{10}$ | C. | $\frac{12}{11}$ | D. | $\frac{13}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com