12.設(shè)函數(shù)f(x)=|2x+1|,x∈R
(1)求不等式|f(x)-2|≤5的解集;
(2)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

分析 (1)由不等式|f(x)-2|≤5,可得-7≤2x+1≤7,由此求得它的解集.
(2)由題意可得|2x+1|+|2x-1|+m≠0 恒成立.利用絕對(duì)值三角不等式可得|2x+1|+|2x-1|≥2,可得m的范圍.

解答 解:(1)由不等式|f(x)-2|≤5,可得-5≤f(x)-2≤5,-3≤f(x)≤7,即|2x+1|≤7,
即-7≤2x+1≤7,即-4≤x≤3,故不等式|f(x)-2|≤5的解集為[-4,3].
(2)由g(x)=$\frac{1}{f(x)+f(x-1)+m}$=$\frac{1}{|2x+1|+|2x-1|+m}$ 的定義域?yàn)镽,
對(duì)任意實(shí)數(shù)x,有|2x+1|+|2x-1|+m≠0 恒成立. 
因?yàn)閨2x+1|+|2x-1|≥|2x+1-(2x-1)|=2,所以m>-2.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,絕對(duì)值三角不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.f(x)是定義在R上的奇函數(shù),且f(x十2)=-f(x),當(dāng)0≤x≤1時(shí).f(x)=x2+x.
(1)求函數(shù)f(x)的周期;
(2)求函數(shù)f(x)在-1≤x≤0時(shí)的表達(dá)式;
(3)求f(6.5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an•log2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在(-∞,0)∪(0,+∞)的奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=x2+2x,那么當(dāng)x∈(0,+∞)時(shí),f(x)=-x2+2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知正三棱柱ABC-A1B1C1,D是AC的中點(diǎn),∠α=30°,∠BDA1=90°,AB=a,求棱柱的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=|x|-$\frac{1}{1+{x}^{2}}$+1,
(1)證明:函數(shù)f(x)在[0,+∞)上單調(diào)遞增.
(2)解不等式f(x)>f(2x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記Sn為數(shù)列{an}的前n項(xiàng)和,bn=(1-$\frac{{S}_{n}}{{S}_{n+1}}$)$\frac{1}{\sqrt{{S}_{n+1}}}$,求證:b1+b2+…+bn$<\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知拋物線C1:y2=2px(p>0)與橢圓C2:x2+2y2=m2(m>0)的一個(gè)交點(diǎn)為P(1,t),點(diǎn)F是拋物線C1的焦點(diǎn).且|PF|=$\frac{3}{2}$.
(Ⅰ)求p,t,m的值;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),橢圓C2上是否存在點(diǎn)A(不考慮點(diǎn)A為C2的頂點(diǎn)),使得過點(diǎn)O作線段OA的垂線與拋物線C1交于點(diǎn)B,直線AB交y軸于點(diǎn)E,滿足∠0AE=∠E0B?若存在,求點(diǎn)A的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}中,a3=$\frac{7}{6}$,a7=$\frac{15}{14}$,且{$\frac{1}{{a}_{n}-1}$}是等差數(shù)列,則a5=(  )
A.$\frac{10}{9}$B.$\frac{11}{10}$C.$\frac{12}{11}$D.$\frac{13}{12}$

查看答案和解析>>

同步練習(xí)冊(cè)答案